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Defect textures in polygonal arrangements of cylindrical
inclusions in cholesteric liquid crystal matrices

Yogesh K. Murugesan,a Damiano Pasinib and Alejandro D. Rey*a

A systematic, computational and scaling analysis of defect textures in polygonal arrangement of cylindrical

particles embedded in a cholesteric (Ch) liquid crystal matrix is performed using the Landau–de Gennes

model for chiral self-assembly, with strong anchoring at the particles’ surface. The defect textures and

LC phases observed are investigated as a function of chirality, elastic anisotropy (monomeric and

polymeric mesogens), and polygonal arrangement and size of particles. The presence of a polygonal

network made of N circular inclusions results in defect textures of a net charge of �(N � 2)/2 per unit

polygonal cell, in accordance with Zimmer’s rule. As the chirality increases, the LC matrix shows the

following transition sequence: weakly twisted cholesterics, 2D blue phases with non-singular/singular

defect lattices, cholesteric phases with only disclinations, and finally fingerprint cholesteric textures with

disclinations and dislocations. For monomeric mesogens at concentrations far from the I–Ch phase

transition and low chirality, for a given symmetry of the LC phase, the particle with weaker (stronger)

confinement results in a phase with lower (higher) elastic energy, while at high chirality the elastic

energy of the LC phase is proportional to the number of particles that form the polygonal network.

Thus, hexagonal (triangular) particle arrangement results in low elastic energy at low (high) chirality. For

semiflexible polymeric mesogens (high elastic anisotropy), defect textures with fewer disclinations/

dislocations arise but due to lamellar distortions we find a higher elastic energy than monomeric

mesogens. The defects arising in the simulations and the texture rules established are in agreement

with experimental observations in cellulosic liquid crystal analogues such as plant cell walls and helical

biological polymeric mesophases made of DNA, PBLG and xanthan. A semi-quantitative phase diagram

that shows different LC phases and defect textures as a function of chirality and elastic anisotropy is

obtained. The inclusion of particles has a stabilizing effect on the LC phases, as they occupy l+1

disclination cores, thereby reducing the free energy cost associated with these disclinations. These

findings provide a comprehensive set of trends and mechanisms that contribute to the evolving

understanding of biological plywoods and serve as a platform for future biomimetic applications.
1 Introduction

Particles in liquid crystalline (LC) mesophases are of increasing
interest from both fundamental physics and engineering appli-
cations point of view. Biological brous composites,1,2 carbon-
ber-reinforced carbon composites,3water in cholesteric (Ch) LC
emulsion,4 polymer dispersed liquid crystals,5 lled nematics
(ref. 6)–cholesterics (ref. 6 and 7)–smectics8,9 and colloids in
cholesteric (ref. 10–12)–nematic13 LCs are some examples of
biphasic heterogeneous materials consisting of suspensions of
secondary phases such as colloidal particles, nanoparticles,
drops, or aligned bers in a LC matrix. These materials can
spontaneously arise through phase separation processes
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between apolymermelt and a LCmaterial, throughdispersion of
the secondary phase,1,2 or through ow of the LC mesophase via
aligned bers.3 The former occurs in synthesis of biological
brous composites such as plant cell walls1 and insect cuticles2

in nature, where biopolymers in the extracellular matrix self-
assemble to form cholesteric (cholesteric) mesophases in the
presence of secondary phases such as cell lumen and pit canals
inplant cell walls, andpore canals in insects. The latter forms the
basis of carbon–carbon high performance composites obtained
by injecting a carbonaceousdiscotic nematicmesophase into the
ber bundle.3 Since liquid crystals possess long-range order and
gradient orientation elasticity,14 under sufficiently strong inter-
action between the brous (cylindrical) inclusions and the LC
mesophase, the direction of orientational anchoring at the
ber’s curved interface propagates through the gradient elas-
ticity effect into the bulk. This results in texturing through
nucleation of bulk orientational defects, such as disclinations
and dislocations, and through defect coarsening and defect
This journal is ª The Royal Society of Chemistry 2013
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splitting. Computational and experimental investigation of the
nature, density and positional order of defects associated with
embedded bers and with ber assemblies in lled LC phases
such as nematic, chiral–nematic, smectic, and columnar is at the
core of an evolving eld. The key motivation of this paper is to
investigate the defect texturing mechanism in cholesteric mes-
ophases with cylindrical inclusions, which is relevant to biolog-
ical and synthetic systems, and serves as a biomimetic system
model for functional and structural materials.

The cylindrical particle-lled cholestericmesophases studied
in this work are known to arise in biological brous composites
such as plant cell walls1 and insect cuticles2 in nature. These
biological materials are termed as LC analogues, where the LC
type of packing is observed frozen-in in the solid state.15 In plant
cell walls, cellulose microbrils coated with hemicelluloses and
embedded in a lignin–pectinmatrix16 are known to self-assemble
and form structures called the twisted plywood architecture15

and defect patterns, characteristics of cholesteric meso-
phases.2,15 Recently, a mathematical model based on the
Landau–de Gennes theory of liquid crystals has been used to
simulate defect textures arising in some plant cell walls in order
to substantiate the role of LC self-assembly in the formation of
twisted plywood architecture in plant cell walls.17 The domain of
this supramolecular self-assembly is rich in secondary inclu-
sions including: (a) pit canals2 of diameter of about 1 mm, regu-
larly spaced and evenly distributed over the cell surface (in the
range of 5 to 7 per mm2) resembling dispersed hollow cylinders,
and (b) elongated plant cells2 which produce the cell wall
components. These micron-sized cylindrical inclusions are
known to form the constraining surface that can direct the
growth of a cholesteric helix in a direction normal to it, necessary
to forma defect freemonodomain twisted plywood structure.15,18

A signicant body of experimental literature indicates that the
polygonal network as shown in Fig. 1, obtained by joining the
centers of secondary inclusions in someplant cell walls, includes
triangles, rectangles, pentagons, and hexagons.2

A similar polygonal network of particle assemblies
embedded in the LC mesophase is known to arise in synthetic
composites such as random heterogeneous lled nematics,3,19

crystalline lled nematics5 and micellar cholesterics.20 The
defect texturing mechanism in particle embedded nematic
Fig. 1 Polygonal networks in some plant cell walls. (a) A triangular network of pit ca
the cell wall of a prune2 and (b) LC phase with a rectangular network formed by fo
defect nucleated due to the presence of inclusions is represented by ‘+’ [adapted f
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phases in these synthetic composite systems has been investi-
gated using theory and simulation.21 The defect texture selec-
tion in a nematic carbonaceous mesophase matrix with
embedded circular carbon bers is known to satisfy Poincaré–
Brouwer’s theorem; the net disclination line strength is equal
to �(N � 2)/2, where N is the number of inclusions.21 For
submicron sized bers, the number of defects is equal to (N� 2)
and all the disclinations are singular, such that the nanoscale
core has a biaxial molecular order with a negative uniaxial
center; defect types are discussed in more detail below. For
micron-sized cylindrical bers, the defect texture is dependent
on the ber conguration i.e., for even number of particles there
is a single defect with an escaped micron-sized core and for odd
number of particles, the (N � 2) disclinations nucleated have
singular nano-scale cores.21 A computational model developed
for coupled phase separation–phase ordering processes has
been used to resolve defect nucleation, defect–defect interac-
tions and defect–particle interactions in polymer–liquid crystal
mixtures.5 When numerically solved, the model can predict the
emergence of a defect lattice with four-fold symmetry in droplet
phase-separated morphologies under spinodal decomposition.
The resulting nematic-droplet structure has a stable polymer
droplet crystal lattice pinned by a lattice of topological defects
and the charge associated with each embedded polymer drop
has been computed to be +1.5 Recently,19 a series of computa-
tional investigations on the texture formation mechanism in
polygonal arrangement of faceted particles embedded in a
nematic LC matrix have concluded that the excess free energy
per particle is dependent on the embedded particle congura-
tion. The excess energy per particle for even-sided polygonal
networks (rectangular and hexagonal) has been reported to be
lower than that for odd-sided particle networks (triangular and
pentagonal).19 Despite common occurrence of polygonal
networks in cholesteric LCs in many biological brous
composites1,2,15 and micellar cholesterics with embedded
innite cylindrical micelles,20 the knowledge of defect nucle-
ation and texturing rules in these chiral systems is far from
complete. For cholesteric LCs with cylindrical inclusions being
lamellar so matter with curved interfaces, the defect texturing
involves a delicate interplay between the symmetry, number
and geometry of the embedded particle arrangement,
nals (P) embedded in the cholesteric mesophase (represented by arced patterns) in
ur cell lumens (L) embedded in the cell wall of a walnut.2 In both the figures, the
rom A. D. Rey, Soft Matter, 2010, 6, 3402–3429].
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connement of the LC phase, viscoelastic properties of the LC
material and multiple length scales arising due to diverse
geometric features such as particles, pitch, domain size, inter-
faces, and defect cores. Understanding defect texturing is
crucial in developing potential applications such as supramo-
lecular templating,8 spatial distribution control of nano-
particles,22 biomimetic material processing,23 and stabilization
of LC phases.4,24 Recently,17 the Landau–de Gennes continuum
model with a Q tensor representation of the liquid crystal
orientation has been used to simulate defect textures arising in
the domain of self-assembly, due to the presence of a rectan-
gular network formed by four cell lumens embedded in the cell
wall of a walnut specimen. The number and type of defects
arising in all the simulations obey the rule that the net charge of
defects nucleated in a domain conned by four circular inclu-
sions is always �1. The total number of defects nucleated is
inversely proportional to the penetration length, which is the
dilation strain required to produce bending in a set of parallel
lamellae and it is smaller than the cholesteric pitch.17 The main
objective of this paper is to extend this model to triangular and
hexagonal polygonal networks in an attempt to establish
generic texture rules in cholesteric mesophases under spatial
frustrations induced by the cylindrical inclusions with diverse
symmetries. For an extensive review of mesoscopic models
employed to quantitatively describe the biological liquid crys-
talline phases and processes, see ref. 25.

The cholesteric mesophase investigated in this study is a
lamellar so matter with helical conguration of the director
eld n, a unit vector that species the local average orientation of
themesogenswith head–tail invariance that implies equivalence
between the director eld n and �n.14 The distance along the
helical axis that corresponds to the twist of n by 2p is the equi-
librium pitch p0. This is a periodic lamellar structure with
elementary lamellae of thickness half a helical pitch each. On a
larger length scale, these systems have a lamellar structure
similar to a smectic liquid crystal and inside each layer that
makes up an elementary lamella, the orientation is similar to
that of a nematic liquid crystal. Owing to this dual structural
nature, these phases nucleate orientational defects (dis-
clinations) typical of nematic phases and translational defects
(dislocations) typical of smectic phases. The possible mecha-
nisms for defect nucleation in cholesteric mesophases with
embedded cylindrical inclusions are as follows. (1) Spatial frus-
tration (single particle mechanism):26 during chiral self-
assembly, the presence of cylindrical inclusions directs the
cholesteric helix inmore than one spatial direction, owing to the
curvature of the particle–mesophase interface, resulting in
spatial frustrations. These frustrations are relieved through the
formation of blue phases that are composed of double twist
cylinders and defect networks. The blue phases locally minimize
the bulk free energy as opposed to the defect free monodomain
that minimizes the bulk free energy globally in a frustration-free
chiral self-assembly.26 (2) Kibble mechanism27 (particle–particle
interaction): a large number of defects nucleate during the
isotropic–cholesteric phase transition in the presence of inclu-
sions, when layers growing from adjacent particles impinge;
defects arise due to the orientation incompatibilities
1056 | Soft Matter, 2013, 9, 1054–1065
between the coalescing cholesteric domains.27 (3) Anisotropic
connement (multiparticle interactions): in mesophases,
inclusion of secondary phases under strong anchoring induces
connement that leads to stress concentration around the
particles that are relieved through nucleation of defects.25 In the
presence of particle networks, the self-assembling material is
subjected to spatially varying connement owing to their particle
conguration. Cholesteric mesophases respond to this frustra-
tion induced by connement through bending and compression
of lamellae and/or nucleation of disclinations and dislocations.

The texture sN in a cholesteric mesophase conned within a
polygon ofN sides obtained by joining the centers ofN cylindrical
inclusions of radius R can be characterized by the number of
defects (n), the type of defect core (Dc), and the total charge of the
defects (Ch). The defect core type can be singular or non-singular
(also known as escaped core); in the former the defect core is
characterized by a complex radial nanoscale gradient in the
molecular order parameters (s lines), while in the latter the
director escapes into the third dimension forming amacroscopic
core region (l lines). The coreless non-singular disclination lines
of core size of the order of p0 have lower energy than the singular s
disclination lines of core size of the order of nanometers. The
charge of an individual disclination can be �1/2 or �1 and it
describes the amount of director rotation when encircling the
defect core. The dislocation core can be a compact non-split core
or split into a pair of disclinations. Fig. 2 shows the director
conguration of some of the classical disclinations and dis-
clinationpairs arising in our simulations. Ref. 28 presents amore
extensive classication of defects in cholesteric LCs. The texture
sN is a function of the ratio of distance between the inclusions
measuredalong the line connecting the centers of twoparticles to
the cholesteric pitch (r0/p0), the material parameter that repre-
sents a measure of the elastic anisotropy of the material (y), the
thermodynamic potential proportional to the dimensionless
concentration of the mesogens which drives the isotropic–
cholesteric phase transition (U), the size of the cylindrical
inclusion (R) and the number of inclusions (N) which in turn
represents the connement geometry and connement intensity.

sN(n, Dc, Ch) ¼ c(p0,y,R,U,N) (1)

In this paper, 2D defect textures in cholesteric mesophases
with embedded networks of parallel cylindrical inclusions are
investigated as a function of the length scale ratio x/p0, material
property y, inclusion arrangement N, and particle size R, in a
regime known as strong anchoring, where the orientation and
molecular order at the particle surface are xed and constant.

The specic objectives of this paper are: (a) to obtain defect
texture rules in cholestericmesophaseswith embeddedpolygonal
particle networks in the ideal case of arrangements of particles
with perfect order, (b) to characterize the defect texturing mech-
anism as a function of chirality, elastic anisotropy and particle
conguration, and to establish a generic phase diagram, (c) to
understand the interaction between particles and defect lattices
and the role of particles on LC phase stability, and (d) to identify
the polygonal arrangement that may lower the elastic energy.
This journal is ª The Royal Society of Chemistry 2013



Fig. 2 Director configuration of some of the classical disclinations and disclination pairs arising in our simulations. (a) Non-singular l+1/2 disclination; (b) singular
s�1/2 disclination; (c) non-singular l�1/2 disclination; (d) non-singular l+1 disclination; (e) non-singular l�1 disclination; (f) high strength non-singular l�2 disclination; (g)
s�1/2l+1/2 disclination pair. The dotted lines indicate that the director is pointing out of the plane of the diagram, the solid lines indicate that the director is in the plane
of the diagram, and the dashed line indicates that the director is tilted at an angle to the plane of the diagram.
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The organization of the paper is as follows. In Section 2,
the quadrupolar order parameter that describes the orienta-
tion and degree of alignment of mesogens is introduced; the
dimensionless form of Landau–de Gennes model for chole-
sterics, in terms of length scales of the model and material
properties, is presented; and the dimensionless coarse-grained
Lubensky–de Gennes model used to analyze some aspects of
the results, in terms of lamellar properties of the liquid crys-
talline phase, is also presented. In Section 3, the computa-
tional domain under investigation is introduced and the
anisotropic connement in the domain that results due to the
chosen particle arrangement geometry is discussed. The
imposed initial and boundary conditions, and the material
properties used in the simulations are also presented. In
Section 4, the defect textures arising in our simulation while
exploring the viscoelastic-geometric parametric space are
presented and the defects are characterized. The effects of
chirality, elastic anisotropy, and inclusion conguration are
investigated to understand the role of connement, symmetry
and lamellar deformation elasticity in defect texturing mech-
anisms. The particle–defect texture interaction in these
systems is also discussed. Section 5 presents the conclusions
of this work on defect textures and lattices in polygonal
arrangements of cylindrical inclusions in cholesteric LC
matrices.
2 Theory and governing equations
2.1 Description of long-range orientational order

As mentioned earlier, LC phases possess long-range orienta-
tional order of their constituent molecules. This long-range
molecular order is described by an orientation distribution
This journal is ª The Royal Society of Chemistry 2013
function, whose second moment is known as the quadrupolar
symmetric and traceless tensor order parameter Q:14,25

Q ¼ S

�
nn� I

3

�
þ P

3
ðmm� llÞ ¼ mnnnþ mmmmþ ml ll (2a)

where the following restrictions apply:

Q ¼ QT (2b)

tr(Q) ¼ 0 (2c)

� 1

2
# S ¼ 3ðnn : QÞ=2# 1; (2d)

� 3

2
# P ¼ 3ðmm� llÞ : Q=2 #

3

2
; (2e)

n$n ¼ m$m ¼ l$l (2f)

The molecular orientation is dened completely by the
orthogonal director triad (n, m, l). The measure of molecular
alignment is dened by the uniaxial (S) and biaxial (P) scalar
order parameters. The quadrupolar symmetry of the Q tensor
retains the head–tail invariance i.e., n(z) and �n(z) are equal.
The cholesteric phase being periodic, the Q tensor satises the
following condition: Q(z) ¼ Q(z + p0). The cholesteric phase is
inherently biaxial (S s 0, P s 0) and the three eigenvalues mn,
mm, and ml are non-zero and distinct.
2.2 Landau–de Gennes theory for LC materials

The Landau–de Gennes (LdG) theory expresses the free energy
density of the liquid-crystalline material in terms of homoge-
neous and gradient elastic contributions. The homogeneous
Soft Matter, 2013, 9, 1054–1065 | 1057
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(gradient) elastic effects are represented by power series of
scalar invariants of tensor parameter Q (gradient of tensor order
parameter VQ). In the absence of an external eld, the total free
energy density of themesophase (f) can be given in the following
dimensionless form:14,18,25,27

f ¼ fiso + fsr + flr (3a)

fsr ¼
�
1

2

�
1�U

3

�
trQ2 �U

3
trQ3 þU

4

�
trQ2

�2�
; (3b)

flr ¼ 1

2

���
x

h0

�
ðV�QÞ þ 4p

�
x

P0

�
Q

	2
þy

��
x

h0

�
ðV$QÞ

	2�
(3c)

where fiso is the free energy density of the isotropic state which
depends on conventional thermodynamic parameters, such as
temperature, pressure, and concentration. fsr and flr are,
respectively, the short- and long-range contributions to the total
free energy density f. The dimensionless parameter U is the
thermodynamic potential proportional to the dimensionless
concentration of anisotropic molecules which drives the
isotropic–chiral–nematic phase transition; U is related to
the concentration C by the relation U ¼ 3C/C*, where C* is the
concentration of the mesogens at the phase transition.
The parameter x is the coherence/internal length that gives the
distance over which variations of long-range orientational order
can occur. This length represents the order of magnitude for the
size of the core of a disclination defect. The parameter h0 is the
macroscopic length scale external/geometric length that gives
the size of the domain. The parameter p0 is the pitch of the
chiral–nematic liquid-crystalline material. It is essential to
recognize that this model is therefore of a mesoscopic nature
since it includes a molecular length scale (x) and a macroscopic
(h0) length scale. The remaining parameter y represents the
measure of the elastic anisotropy of the material. This param-
eter is constrained to be greater than 1/2 to ensure the positivity
and thermodynamic stability of the long-range contribution to
the free energy.

The nematodynamics equation used to describe the time
evolution of the tensor order parameter Q is given by:

�g
vQ

vt
¼ df

dQ
¼

�
vf

vQ
� V$

vf

vVQ

	½s�
(4)

where the superscript [s] denotes symmetric and traceless
tensors, and g is the rotational viscosity.29 Substituting eqn (3)
into eqn (4) yields the equation for spatio-temporal evolution of
tensor order parameter Q(x,t).
2.3 Characterization methods: Lubensky–de Gennes coarse
grained elastic theory and lamellar deformation modes

To guide the exploration of the model to signicant biological
ranges and to characterize the numerical results, we use the
coarse grained model of Lubensky–de Gennes.14 At scales larger
than the equilibriumpitch p0, cholesteric LC phases are lamellar
structures characterized in terms of bending and dilation of
lamellae using a coarse grained elastic theory. According to the
1058 | Soft Matter, 2013, 9, 1054–1065
Lubensky–de Gennes theory, the dimensionless free energy
density due to the lamellar displacement “u” reads:14

f ¼

2
66664
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2
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�
v2u

vx2

�2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
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2
B

�
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|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
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3
77775 (5a)

Bending modulus K1 ¼ 27

16
S2

�
x

h0

�2

ð1þ yÞ (5b)

Dilation modulus B ¼ 9S2 ð2pÞ2
�
x

p0

�2

(5c)

Penetration length l1 ¼
ffiffiffiffiffiffi
K1

B

r
¼ 0:069

�
p0

h0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ yÞ

p
(5d)

The penetration length l1 denes the dilation strain
required to produce bending in a set of parallel lamellae and it
is smaller than the pitch p0. The dimensionless bending (K1)
and dilation (B) parameters of this model are expressed in terms
of the uniaxial scalar order parameter (S), the length-scale ratios
x/h0 and x/p0, and the elastic anisotropy (y) of the original LdG
model (eqn (3)). Hence changes in the coarse grained parame-
ters (K1, B) that control the lamellar geometry can be predicted
by changes in the primitive LdG parameters. As per eqn (3) and
(4), the defect textures given by Q(x,t) are modulated by the
length scale ratios (x/h0) and (x/p0), the elastic anisotropy y and
the thermodynamic potential U. In this study, the parametric
space has been limited to (x/p0) and y. Increasing elastic
anisotropy decreases the dimensionless dilation/bending ratio:

B

K1

¼ 211:27

�
h0

x

�2�
x

p0

�2

ð1þ yÞ (6)

Since a high value of B/K1 (small l1) promotes defect nucle-
ation, large anisotropy, large pitches, and smaller samples will
tend to decrease defect proliferation in strongly twisted chole-
sterics. In terms of penetration length l1:

l1 ¼
ffiffiffiffiffiffi
K1

B

r
¼ 0:069

�
1

x=p0

��
x

h0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ yÞ

p
(7)

we see that large elastic anisotropy y, large pitch p0, and smaller
samples h0 increase l1 which decreases the defect content in
strongly twisted cholesterics. The elastic anisotropy ratio in our
model relates to the well-known Frank’s bending and twist
elastic constants as: y ¼ [2(K33/K22) � 1] and assumes equal
bend and splay deformations i.e., K11 ¼ K33. For monomeric
mesogens far from phase transitions, the elastic anisotropy is
modest (y z 1), but for polymeric rods it is large (y [ 1),
changing the relative energetic costs of bending/dilation and
the defect density in the observed textures.21,30,31

3 Computational modeling

To understand the defect texturing during directed chiral self-
assembly in cholesteric mesophases with embedded cylindrical
This journal is ª The Royal Society of Chemistry 2013
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inclusions, we simulate the time evolution of the tensor order
parameter Q in 2D domains with a network of inclusions that
forms: (a) an equilateral triangle (N¼ 3), (b) a square (N¼ 4), and
(c) a regular hexagon (N ¼ 6), when joining their centers. To
minimize the computational time, a single unit cell of nite size
with periodic boundary conditions is used to represent the 2D
innite periodic structure. As constructing an innite periodic
structure with only regular pentagons is not feasible, the analysis
has been limited to triangular, square and hexagonal inclusion
networks. All the length variables of themodel are scaledwith the
macroscopic length scale of the model h0. The dimensionless
height and width of the domains with triangular, square and
hexagonal inclusionnetworks are 0.866� 1, 1� 1 and1.732� 1.5
respectively. This geometry inherently generates anisotropic
connement in the domain of self-assembly. The LC domain
conned in a triangular network of inclusions is strongly
conned, while that conned in a hexagonal network of inclu-
sions is weakly conned. This aspect of the model arising from
the conguration of particle arrangement is essential in under-
standing the effect of connement on defect textures and lattices
observed in our simulations. The dimensionless radius of the
inclusions (R) is 0.15 and the dimensionless separation distance
between the particles measured along the line connecting their
centers (r0) is 0.2 and constant for all the three domains under
investigation in Sections 4.1–4.4. In Section 4.5, to study the effect
of inclusion size on defect textures, the dimensionless radius of
the inclusions (R) is varied from 0.125–0.175 and the dimen-
sionless separation distance between the particles measured
along the line connecting their centers (r0) is 0.25–0.15. At the
surface of the particles represented by circles, the director
exhibits a strong planar anchoring. These surfaces act as con-
straining layers that direct the LC phase ordering. It is also
important to note that, although the simulation domain is two
dimensional (2D), Q conserves its ve degrees of freedom. Since
the tensor order parameter has ve independent components
(symmetric and traceless), ve coupled time-dependent
nonlinear partial differential equations (eqn (4)) need tobe solved
simultaneously. Initially the LCmaterial is taken to be in a stable
isotropic state. In this work, this disordered state is imposed by
setting the starting eld of the simulationsQ0¼Q(t¼ 0)¼ 0. The
governing equations are then solved using the Finite Element
Method soware package COMSOL, using adaptive nite
elements and biquadratic basis functions with the generalized
Fig. 3 Defect characterisation of the LC phase observed for y¼ 1, x/p0 ¼ 0.0125, N¼
z-componentof thedirector |nz|. Thefieldsgo fromblue to redas theout-of-plane comp
the singulardisclination core to theequilibriumvalueSeq (¼0.787), and (c)biaxial scalar

This journal is ª The Royal Society of Chemistry 2013
minimal residual (GMRES) solver method and a time-dependent
backward Eulermethod. Convergence, mesh-independence, and
stability are conrmed for each simulation result.

4 Results and discussion
4.1 Defect textures and charge balance

This section presents simulation results of defect textures while
varying the cholesteric pitch (p0) and elastic anisotropy (y), while
keeping the length scale ratio x/h0 and themodynamic potential U
constant, thus changing K1, B and l1 (see eqn (5b–d)). The chole-
steric layering is visualized by plotting the out-of-plane component
|nz| of the director eld (see eqn (1)). Surface plots of z-component
of the director |nz| (Fig. 3(a)), the uniaxial scalar order parameter S
(Fig. 3(b)) and the biaxial scalar order parameter P (Fig. 3(c)) are
used to identify defect cores. In Fig. 3(a), the elds change from
blue to red as the out-of-plane component |nz| varies from 0 (the
director is in the plane of the diagram) to �1 (the director is
pointing out of the plane of the diagram). In Fig. 3(b), the uniaxial
scalarorderparameter ranges fromapproximately0.245at the core
of singular disclinations to the equilibrium value Seq (¼ 0.787). In
Fig. 3(c), the biaxial scalar order parameter ranges from the equi-
librium value Peq (¼ 0.0473) to approximately 0.479 at the core of
singular disclinations. As the surface plots of uniaxial and biaxial
order parameters reveal the same information in terms of defect
identication, only surface plots of the uniaxial order parameter
and |nz| prole are shown for all the simulatedphases and textures
in Fig. 4. All the results presented in this work are for steady state
solutions. The type, number, strength, and charge of all the dis-
clination lines and dislocations in the LC domain conned within
apolygonofN sides obtainedby joining the centersofN cylindrical
inclusions for N ¼ 3,4,6 and the type of LC phase as predicted by
eqn (3) and (4) as a functionof the length scale ratio x/p0 and elastic
anisotropy y, for a xed inclusion size and separation distance, are
shown in Table 1. The length scale ratio x/h0 is kept constant for all
the simulations at 0.0025. The coherence length (x) is of the order
ofdisclination coresize and is about10nm, the chosenvalueof the
length scale ratio x/h0 xes the inclusion diameter around 1.2 mm
and is xed for all the simulations and the minimum separation
distancebetween two inclusions is around0.8mm. Inanattempt to
study the effect of cholesteric pitch on the defect texture and LC
phases arising in our simulations, the length scale ratio x/p0 is
varied from 0.05 to 0.001, which corresponds to variation of
cholesteric pitch from0.2 to 10 mm. The effect of elastic anisotropy
4 containing 6� s�1/2 + 2� l+1 defects per unit polygonal cell. (a) Surface plot of
onent |nz| goes from0to�1, (b)uniaxial scalarorderparameterSgoes from0.245at
orderparameterPgoes fromPeq (¼0.0473) to0.479at the singulardisclination core.
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Fig. 4 Surface plots of z-component of the director |nz| (left) and the scalar order
parameter S (right) of the observed LC phases. The fields go from blue to red as
the out-of-plane component |nz| goes from 0 to �1 and scalar order parameter S
goes from zero to the equilibrium value. (a) and (b) cholesteric fingerprint texture
y ¼ 1, x/p0 ¼ 0.05, N ¼ 4; (c) and (d) cholesterics with disclinations y ¼ 1, x/p0 ¼
0.0125, N ¼ 4; (e) and (f) hexagonal blue phase with singular disclinations y ¼ 1,
x/p0 ¼ 0.01, N ¼ 3; (g) and (h) hexagonal 2D blue phase with non-singular
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hasbeen investigated by computing thedefect textures andphases
for y ¼ 1 (corresponds to equal bend, splay and twist elastic
modulii) and y¼ 21 (corresponds to bend and splaymodulii equal
to 11 times the twist elastic modulus).

In Table 1, the rst column denes the polygonal arrange-
ment N, the second the length scale ratio y, the third the elastic
anisotropy constant x/p0, the fourth the number, charge and the
type of bulk defects, and the h the type of LC phase. It is
evident that the presence of a polygonal network with N circular
inclusions results in defect textures of a net charge of�(N� 2)/2
per unit polygonal cell, as predicted by Zimmer’s rule.5,21 This
prediction is in agreement with the observed l�1 disclination in
the domain bound between four cells in the cell wall of a
walnut2 (Fig. 1) and also the theoretical free energy computation
of a hypothetical isotropic region bound between three double
twist cylinders resolving to be a �1/2 disclination.14

The LC phases observed in the simulation are depicted in
terms of surface plots of z-component of the director |nz| and the
scalar order parameter S in Fig. 4. Fig. 4(a) and (b) show a
ngerprint texture of the cholesteric phase with characteristic
“stripes” anddislocationsanddisclinations,lledwith cylindrical
particles.32 Fig. 4(c) and (d) show the cholesteric phase with only
disclinations. Fig. 4(e) and (f) show the 2D cholesteric hexagonal
blue phase with singular disclination lattice and all double twist
cylinders replaced by cylindrical particles. Fig. 4(g) and (h) show
the 2D cholesteric hexagonal blue phase with non-singular dis-
clination latticeandsomeof thedouble twist cylinders replacedby
cylindrical particles. Fig. 4(i) and (j) show the 2D cholesteric
tetragonal blue phase with double twist cylinders replaced by
cylindrical particles. Fig. 4(k) and (l) show weakly twisted lled
cholestericswith singular nematic disclinations. Fig. 4(m) and (n)
show the cholesteric phase with high strength disclinations lled
with cylindrical particles. Singular disclinations are identied
from the scalar order parameter surface plots and non-singular
disclinations are identied from |nz| surface plots. The mecha-
nisms behind formation of these LC phases and defect textures
are detailed in Sections 4.2–4.4 using Lubensky–deGennes coarse
grained elastic theory detailed in Section 2.3.
4.2 Effect of the cholesteric pitch on the defect textures and
LC phases

To gain insight into the role of the cholesteric pitch (p0) and
connement on the type of the LC phase and defect texture arising
from a chiral self-assembly due to cylindrical inclusions, in this
section, the length scale ratio x/p0 is decreased from 0.05 to 0.005.
This variation corresponds to an increase in the cholesteric pitch
from 0.2 to 2 mm. The LC phases are computed for three domains
with different polygonal arrangement of inclusions, each repre-
senting different degrees of connement. The length scale ratio
x/h0, thermodynamic potential U and elastic anisotropy constant y
arekept constant at 0.0025, 6 and1. This corresponds to a variation
disclinations y ¼ 1, x/p0 ¼ 0.005, N ¼ 6; (i) and (j) tetragonal 2D blue phase with
non-singular disclinations y ¼ 1, x/p0 ¼ 0.005, N ¼ 4; (k) and (l) weakly twisted
cholesterics y ¼ 1, x/p0 ¼ 0.0001, N ¼ 6; (m) and (n) cholesterics with high
strength disclinations y ¼ 21, x/p0 ¼ 0.005, N ¼ 6. Singular disclinations are
identified in the scalar order parameter surface plots (b,d,f,l).
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Table 1 Summary of number and types of defects as a function of elastic anisotropy y, length scale ratio x/p0 and number of sides of the unit polygonal cell N. For all
the simulations, length scale ratio x/h0 ¼ 0.0025 and thermodynamic potential U ¼ 6 (see Fig. 4 for orientation nz and scalar order S fields)

N y x/p0 Defects in a unit polygonal cell Type of lled LC phases

3 1 0.05 6 � s�1/2l+1/2 + 3 � s�1/2 + 1 � l+1 Cholesteric ngerprint texture
0.025 3 � s�1/2 + 1 � l+1 Cholesterics with disclinations
0.0125 3 � s�1/2 + 1 � l+1

0.01 1 � s�1/2 Hexagonal 2D blue phase with singular disclination lattice, Fig. 4(e) and (f)
0.005 1 � l�1/2 Hexagonal 2D blue phase with non-singular disclination lattice
0.00125 1, s ¼ �1/2 (singular) Weakly twisted cholesterics

4 1 0.05 24 � s�1/2l+1/2 + 4 � s�1/2 + 1 � l+1 Cholesteric ngerprint texture, Fig. 4(a) and (b)
0.025 8 � s�1/2l+1/2 + 6 � s�1/2 + 2 � l+1

0.0125 6 � s�1/2 + 2 � l+1 Cholesterics with disclinations, Fig. 4(c) and (d)
0.01 4 � s�1/2 + 1 � l+1

0.005 1 � l�1 Tetragonal 2D blue phase, Fig. 4(i) and (j)
0.0005 2 � s ¼ �1/2 (singular) Weakly twisted cholesterics

21 0.05 4 � l�1/2 + 2 � l+1/2 + 6 � s�1/2l+1/2 Cholesteric ngerprint texture, Fig. 6(b)
0.0125 1 � l�1 Tetragonal 2D blue phase, Fig. 6(a)
0.005 1 � l�1

6 1 0.05 36 � s�1/2l+1/2 + 8 � s�1/2 + 2 � l+1 Cholesteric ngerprint texture
0.025 6 � s�1/2l+1/2 + 8 � s�1/2 + 2 � l+1

0.0125 6 � s�1/2 + 1 � l+1 Partially lled cholesteric hexagonal blue phase with singular
disclination lattice0.01 6 � s�1/2 + 1 � l+1

0.005 6 � l �1/2 + 1 � l�1 Partially lled cholesteric hexagonal blue phase with non-singular
disclination lattice, Fig. 4(g) and (h)

0.0001 6 � s ¼ �1/2 + 2 � s ¼ +1/2 (singular) Weakly twisted cholesterics, Fig. 4(k) and (l)
21 0.005 1 � l�2 Cholesterics with high strength disclinations, Fig. 4(m) and (n)

Fig. 5 Dimensionless excess free energy per cylindrical inclusion (fe) as a function
of the length scale ratio r0/(p0/2), for three different polygonal arrangements of
cylindrical inclusions (N¼ 3,4,6). As the length scale ratio (2r0/p0) is increased, the
LC matrix shows the following series of transitions: weakly twisted cholesterics,
2D blue phases with non-singular/singular defect lattices, cholesteric phases with
only disclinations, and fingerprint cholesteric textures with disclinations and
dislocations. For all particle configurations, the excess free energy per particle
increases monotonously with increase in chirality.

Paper Soft Matter
of the dimensionless penetration length (l) from 4.879 � 10�3 to
0.04879. Since the penetration lengths for all the simulations in
this section are less than 1, it is easier to deform the lamellae
through bending than to compress/dilate them. Hence for all the
textures observed in this study, the lamellar thickness is approxi-
mately equal to p0/2. The results anddiscussion inSections 4.2 and
4.3 are limited tomonomericmesogens far fromphase transitions.

Since the LC material of layer periodicity p0/2 is conned
between two inclusions separated by a separation distance r0,
the transitions between different LC phases and their corre-
sponding elastic energies can be described as a function of the
length scale ratio r0/(p0/2). The elastic energy of the LC phases is
characterized by the excess free energy per particle, the differ-
ence between the total free energy of the LC domain with an
inclusion and the free energy of the same volume of defect free
cholesteric planar monodomain.

For a 2D domain, the excess free energy fe19 is:

fe ¼

Ð
A

�
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�
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where fm is the free energy of the defect freemonodomain, given
by27
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where A is the area of an unit cell of the domain;Na is the number
of particles in aunit cell of adomain (for example, inFig. 4(g) unit
cell of a domain with a hexagonal particle network has 8
This journal is ª The Royal Society of Chemistry 2013
particles), Seq and Peq are equilibrium values of scalar order
parameters.18,27Wenote that the excess free energy density fe is a
measure of the total energy increase per particle above that of the
defect free planar monodomain energy fmA, due to lamellar
distortions (bending and dilation) and defect nucleation.

Fig. 5 shows the dimensionless excess free energy per cylin-
drical inclusion as a function of r0/(p0/2), for three different
polygonal arrangements of cylindrical inclusions (N¼ 3,4,6). For
Soft Matter, 2013, 9, 1054–1065 | 1061
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a given particle conguration, when 2r0/p0 [ 1, the impinge-
ment of layers growing from different particles and the nucle-
ation of defects in the domain of maximum stress concentration
induced by connement (at the intersection of diagonals of the
polygon) result in a phase rich in dislocations and disclinations.
The resulting phase has stripes typical of ngerprint cholesteric
textures lled with cylindrical inclusions (Fig. 4(a) and (b)). The
excess free energy per particle associated with these phases is
high due to the presence of numerous singular disclination cores
of high elastic energy cost. For 2r0/p0$ 1, the resulting phase has
only disclinations. These disclinations may arise due to
impingement of layers and/or induced by stress concentration
under connement, resulting in particle lled cholesteric phases
with only disclinations or particle lled 2D blue phases with
singular disclination lattice (Fig. 4(c) and (d)). The excess free
energy per particle computed for these domains is less than that
ofngerprint textures, owing to relatively less number of singular
disclination cores. When 2r0/p0 ¼ 0.8, the resulting phase has
only non-singular disclinations induced by stress concentration
under connement, resulting in particle lled cholesteric blue
phases with non-singular disclination lattice (Fig. 4(g)–(j)). These
phases represent lowest elastic energy, since all the defects
nucleated have non-singular disclination cores. Hypothetically,
when a planar cholesteric mesophase of thickness p0 is conned
between two at surfaces separated by a distance r0, the length
scale ratio 2r0/p0¼ 1 would have resulted in theminimum excess
free energy as one planar cholesteric lamella of thickness half a
pitch (p0/2) would have occupied the distance between two adja-
cent particles r0 without deformation of lamella or any orienta-
tional incompatibility between director elds at the line of
impingement. In our simulations, the minimum excess free
energy per particle is observed at 2r0/p0¼ 0.8 owing to the relative
ease of compression/dilation of the lamellae as the penetration
length approaches 1 and as the curvature of the constraining
surface is propagated into the bulk through surface anchoring
and gradient elasticity. As the length scale ratio 2r0/p0 tends to be
0, the weakly twisted cholesteric phases33 with thin singular line
disclinations distinctive of nematic LC phases are stabilized
(Fig. 4(k) and (l)). In our simulations, these defect cores are
singular (s¼�1/2 and s¼ +1/2) resulting in higher elastic energy
costs. Hence, for a given polygonal arrangement in a chiral
mesophase composed of monomeric mesogens, the particle
separationdistance to equilibriumcholesteric lamellar thickness
ratio 2r0/p0 of 0.8 favours 2D blue phases.
4.3 Effect of particle conguration on the elastic energy of
the LC phases

To identify the polygonal conguration that may lower the
elastic energy, the excess free energy per particle for phases
arising under different polygonal arrangements is compared in
this section.

From Fig. 5, it is evident that 2D hexagonal blue phases
partially lled with cylindrical inclusions arising in chiral self-
assembly in hexagonal arrangement of inclusions (N¼ 6) at low
chirality (2r0/p0 ¼ 0.8) have the lowest elastic energy. For the
range of cholesteric pitches explored in this study, phases with
1062 | Soft Matter, 2013, 9, 1054–1065
four-fold square symmetry observed under chiral self-assembly
in square arrangement of particles have the highest elastic
energy. This remark is in agreement with theoretical and
experimental observations that at low chirality (large pitch), in
the absence of external elds, the hexagonal blue phase appears
as an intermediate phase during isotropic to cholesteric tran-
sition rather than tetragonal blue phases.34 The hexagonal blue
phase with cylindrical inclusions occupying all non-singular l+1

disclinations arising under triangular arrangement of particles
has slightly higher elastic energy than the partially lled
hexagonal blue phase arising under hexagonal particle
arrangement (Fig. 4(g) and (h)), owing to higher defect density
per particle per unit area.

At lower values of 2r0/p0 (2r0/p0# 4), triangular arrangement of
particles that impose stronger connement and higher number
of particles per unit area of the domain has higher elastic energy
than hexagonal arrangement of particles that impose weaker
connement. However, the decrease of difference in elastic
energy at the onset ofngerprint textures as the pitch is increased
suggests that the elastic energy of a ngerprint texture formed
under hexagonal arrangement of particles might exceed that of
square arrangement at a higher chirality. This predicted increase
in elastic energy of ngerprint textures formed under hexagonal
arrangement can be seen in Fig. 5, comparing the excess free
energy per particle for phases arising under triangular and
hexagonal particle arrangement. The elastic energy of a nger-
print texture formed under hexagonal arrangement of particles
surpasses that of triangular arrangement at 2r0/p0¼ 6.7. This can
be attributed to competition between core energies of defects
nucleated through multiparticle interaction at the domain of
stress concentration and that of the defects nucleated through
particle–particle interaction due to impingement of layers
growing from two particles. At low chirality, for a given symmetry
of the LC phase, the particle with weaker (stronger) connement
results in a phase with lower (higher) elastic energy. As the
chirality of the LC phase is increased, the defect nucleation
through Kibble’s mechanism, where layers growing from
different particles impinge, resulting in orientational incompat-
ibilities that are relived through nucleation of dislocations and
disclination, is initiated. As the chirality is increased further, the
number of layers impinging and hence the defects nucleated are
increased proportionally, while the number of defects due to
connement effects does not vary considerably. This leads to a
regime where the elastic energy of a LC phase is proportional to
the number of particles that forms the polygonal network. Hence
at higher chirality, a LC phase formed in a hexagonal particle
network has higher elastic energy than the one formed in square
and triangular particle networks. In these phases, the arrange-
ment of defects due to layer impingement exhibits the same
symmetry as that of the particle arrangement.
4.4 Effect of elastic anisotropy on the defect textures and LC
phases observed

Elastic anisotropy is a crucial material property in defect texture
studies as it plays a vital role in defect dynamics and preferred
modes of lamellar distortion and hence the nature of defects
This journal is ª The Royal Society of Chemistry 2013



Fig. 6 Surface plots of the z-component of the director |nz| of the observed LC
phases at high elastic anisotropy. The fields change from blue to red as the out-of-
plane component |nz| varies from 0 to �1. (a) Tetragonal 2D blue phase at high
elastic anisotropy y ¼ 21, x/p0 ¼ 0.0125, N ¼ 4. (b) Cholesteric fingerprint texture
at high elastic anisotropy y ¼ 21, x/p0 ¼ 0.05, N ¼ 4. The circled region encom-
passes Lehmann cluster, a quadrupolar defect interaction.

Fig. 7 Dimensionless excess free energy per cylindrical inclusion (fe) as a function
of the length scale ratio r0/(p0/2), for monomeric mesogens (y ¼ 1) and semi-
flexible polymeric mesogens (y ¼ 21) for square arrangement of cylindrical
inclusions (N ¼ 4). For the same configuration of cylindrical inclusions, increasing
elastic anisotropy results in higher excess free energy per particle.
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that are stabilized. As the elastic energy variation with chole-
steric pitch is monotonous and the phase transitions are iden-
tical for all three embedded polygonal network of inclusions
(Fig. 5), chiral self-assembly with square arrangement of parti-
cles in the domain (N ¼ 4) is used as a model conguration for
studying the effect of elastic anisotropy in this section. The
length scale ratio x/p0 is varied from 0.05 to 0.005, and two
values of elastic anisotropy constant y ¼ 1 corresponding to
monomeric mesogens far from phase transitions and y ¼ 21
corresponding to semiexible polymeric mesogens are relevant
to biological chiral self-assembly. The length scale ratio x/h0 and
thermodynamic potential U are kept constant at 0.0025 and 6
respectively. The surface plots of z-component of the director
|nz| for LC phases observed at high elastic anisotropy in the
simulation are depicted in Fig. 6.

Fig. 7 shows the dimensionless excess free energy per
cylindrical inclusion as a function of r0/(p0/2), for two values of
elastic anisotropy (y ¼ 1, 21) for N ¼ 4. For a given cholesteric
pitch, the increase in elastic anisotropy increases the penetra-
tion length for polymeric mesogens by 3.317 times. This makes
the lamellae in polymeric chiral mesophases relatively easier to
This journal is ª The Royal Society of Chemistry 2013
dilate/compress and difficult to bend, compared to monomeric
mesogens. As a result, disclinations with high strength that are
unstable at y ¼ 1 are stabilized at higher elastic anisotropy y ¼
21 at lower chirality. Stabilization of l�2 disclination with six-
fold hexagonal symmetry in the domain conned in a hexag-
onal particle arrangement at low chirality and high anisotropy
(polymeric mesogens) indicates particle symmetry controlled
defect nucleation that is only observed at high chirality for
monomeric mesogens (Fig. 4(m) and (n)).

At high chirality and high elastic anisotropy (polymeric
mesogens), ngerprint textures with fewer dislocations/dislo-
cations arise. The observed defect textures have the following
characteristics: (a) the symmetry of the particle arrangement is
not transferred to the defect arrangement and the texture
becomes more random (compare Fig. 4(a) and 6(b)), (b) non-
singular disclinations of strength +1 (l+1) that involve bending
of lamellae are now energetically costly and are avoided, and (c)
the lamellae tend to avoid bending and are locally planarly
aligned through: (i) the nucleation of defects closer to the
particle surface and (ii) the nucleation of quadrupolar defects
such as Lehmann clusters that are known to arise in nematic,35

cholesteric36–38 and smectic LCs.39 This result is in good agree-
ment with helicoidal textures formed from cellulose micro-
brils through self-assembly in the cell wall of a prune with a
triangular network of pit canals (P) embedded in the cholesteric
mesophase2 (Fig. 1(b)). The observed textures also follow
experimental observations in three helical biological polymeric
mesophases, namely PBLG (a polypeptide), DNA (a poly-
nucleotide) and xanthan (a polysaccharide).40 Despite their
different chemical nature, the phases given by these biopoly-
mers are devoid of solitary s�1/2 disclinations. If at all present,
these singular disclinations are observed only as s�1/2l+1/2 dis-
clination pairs. The results of our simulations at high elastic
anisotropy corresponding to LC phases of semi-exible poly-
meric mesogens (Table 1, Fig. 6) are consistent with this
experimental observation.

For semiexible polymeric mesogens (high elastic anisot-
ropy), defect textures with fewer disclinations/dislocations arise
but due to lamellar distortions (bending and dilation) we nd a
higher elastic energy than monomeric mesogens (Fig. 6).
4.5 Defect lattice–particle interaction in chiral self-assembly
systems

To understand the interaction of particles with the LC phases
and defect textures observed, we simulate the 2D blue phases
without embedded particles. The effect of particle size is also
investigated. The 2D blue phases with only non-singular defect
cores are simulated by dictating mesogenic orientation along
the third direction at points representing the center of the
particles. Depending on the arrangement of the points, a
tetragonal 2D blue phase with superimposed l+1 and l�1 dis-
clination lattices with four-fold square symmetry or a hexagonal
2D blue phase with l+1 disclination lattice with six-fold
symmetry superimposed by l�1/2 disclination lattice with three-
fold symmetry is formed. By comparing the lled 2D blue
phases observed in our simulations, we conclude that the
Soft Matter, 2013, 9, 1054–1065 | 1063



Fig. 8 Phase diagram for different LC phases as a function of the length scale ratio r0/(p0/2) and elastic anisotropy (y). (a) At low elastic anisotropy and low chirality,
defects due to layer impingement are absent and the elastic energy of the LC phase depends solely on defects nucleated through confinement effects. (b) As the
chirality is increased, disclinations and dislocations nucleated through layer impingement increase while the number of defects due to confinement effects does not
vary considerably. This leads to a regime where the elastic energy of a LC phase is proportional to the number of particles that forms the polygonal network. (c) At high
elastic anisotropy and low chirality, cholesterics with high strength disclination that has the symmetry of the particle arrangement (N ¼ 6) or 2D blue phases (N ¼ 3,4)
are stabilized. (d) At high elastic anisotropy and high chirality, the resulting defect texture lacks the symmetry of the particle arrangement and quadrupolar defect
interactions such as Lehmann cluster are observed.
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particles occupy l+1 disclination cores thus reducing the free
energy cost associated with these disclinations and that they
have a stabilizing effect on the LC phases.4,41 Similar phenom-
enon has been observed in nanoparticles in LC phases,36 and
spherical colloidal particles in cholesteric phases.41

Under strong anchoring at the particle interface, the director
eld deviates from that of a 2D blue phase due to distortions
induced by the inclusion of the particles. These distortions give
rise to an anchoring penalty which is a function of particle size
(R).41 Of the three particle sizes explored in this study (R¼ 0.125,
0.15 and 0.175, x/p0 ¼ 0.005, y ¼ 1), particles of dimensionless
radius 0.15 exhibit least deviation from the 2D blue phase
director eld and hence theminimumanchoring penalty. All the
three particle sizes explored result in single l�1 disclination. At
values of R < 0.125, cholesteric phases with disclinations emerge
while for R > 0.175, the LC phase is a weakly twisted cholesteric.
This anchoring penalty can be eliminated by using weak
anchoring at the particle surface.41 However, for micron sized
particles investigated in thiswork, the free energy cost associated
with anchoring penalty is insignicant compared to the energy
reduction due to the particles replacing l+1 disclinations.
5 Conclusions

A systematic analysis of defect textures in polygonal arrange-
ment of micron-sized cylindrical inclusions in a cholesteric LC
matrix has been performed using the Landau–de Gennes model
for chiral self-assembly. The effects of varying cholesteric pitch,
particle conguration, elastic anisotropy and particle size on
defect lattices, textures and LC phases stabilized have been
investigated in the ideal case of arrangements of particles with
perfect order. The presence of a polygonal network with N
circular inclusions results in defect textures of a net charge
of �(N � 2)/2 per unit polygonal cell, as predicted by Zimmer’s
rule (Table 1). This prediction is in agreement with the observed
1064 | Soft Matter, 2013, 9, 1054–1065
l�1 disclination in the domain bound between four cells in the
cell wall of a walnut2 (Fig. 1) and theoretical free energy
computation of a hypothetical isotropic region bound between
three double twist cylinders resolving to be a �1/2 dis-
clination.14 As the chirality is increased, the LCmatrix shows the
following series of transitions: weakly twisted cholesterics, 2D
blue phases with non-singular/singular defect lattices, chole-
steric phases with only disclinations, and ngerprint chole-
steric textures with disclinations and dislocations (Fig. 4). The
elastic energy of the domain represented in terms of excess free
energy per particle monotonically increases with increasing
chirality (Fig. 5) for strongly twisted cholesterics. Depending on
the particle conguration, the LC matrix phase might be
strongly/weakly conned. In monomeric mesogens, for a given
symmetry of the LC phase, the particle with weaker (stronger)
connement results in a phase with lower (higher) elastic
energy at low chirality. Hexagonal symmetry of the LC phases is
energetically favoured in comparison to tetragonal symmetry. At
high chirality, the elastic energy of a LC phase is proportional to
the number of particles that form the polygonal network. The
arrangement of defects due to layer impingement exhibits the
same symmetry as that of the particle arrangement. Hexagonal
(triangular) particle arrangement results in low elastic energy at
low (high) chirality. For semiexible polymeric mesogens (high
elastic anisotropy) the observed defect textures have the
following characteristics. (I) At high chirality: (a) the symmetry
of particle arrangement is not transferred to the defect
arrangement and the texture becomes more random, (b) non-
singular disclinations of strength +1 (l+1) that involve bending
of lamellae are now energetically costly and are avoided, and (c)
the lamellae tend to avoid bending and are locally planarly
aligned through: (i) the nucleation of defects closer to the
particle surface and (ii) the nucleation of quadrupolar defects
such as Lehmann clusters; (II) at low chirality: (d) high strength
disclination lines possessing the same symmetry as the particle
This journal is ª The Royal Society of Chemistry 2013
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arrangement are stabilised. For semiexible polymeric meso-
gens (high elastic anisotropy), defect textures with fewer dis-
clinations/dislocations arise but due to lamellar distortions
(bending and dilation) we nd a higher elastic energy than
monomeric mesogens (Fig. 6).

The defects arising in the simulations and the texture rules
established are in agreement with experimental observations in
cellulosic liquid crystal analogues such as plant cell walls and
helical biological polymeric mesophases made of DNA, PBLG and
xanthan. The above-mentioned ndings are compactly summa-
rized in the phase diagram (Fig. 8), which shows the different LC
phases and textures as a function of chirality and elastic anisot-
ropy. Comparing the lled 2D blue phases observed in our simu-
lations with 2D blue phases without any inclusions, we conclude
that the particles occupy l+1 disclination cores thus reducing the
free energy cost associated with these disclinations. Thus the
inclusion of particles has a stabilizing effect on the LC phases.
Under strong anchoring at the particle interface, the director eld
deviates from that of a 2Dbluephasedue todistortions inducedby
the inclusion of the particles. These distortions give rise to
anchoring penalty which is a function of particle size. However, for
micron sized particles investigated in this work, the free energy
cost associated with anchoring penalty is insignicant compared
to that reduced by particles replacing l+1 disclinations. These
ndings provide a comprehensive set of trends and mechanisms
that contribute to the evolving understanding of biological
plywoods and serve as a platform for biomimetic applications.
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Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 5188.
Soft Matter, 2013, 9, 1054–1065 | 1065


	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices

	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices

	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices
	Defect textures in polygonal arrangements of cylindrical inclusions in cholesteric liquid crystal matrices


