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a b s t r a c t

This paper focuses on the stiffness and strength of lattices with multiple hierarchical levels.
We examine two-dimensional and three-dimensional lattices with up to three levels of
structural hierarchy. At each level, the topology and the orientation of the lattice are pre-
scribed, while the relative density is varied over a defined range. The properties of selected
hierarchical lattices are obtained via a multiscale approach applied iteratively at each hier-
archical level. The results help to quantify the effect that multiple orders of structural hier-
archy produces on stretching and bending dominated lattices. Material charts for the
macroscopic stiffness and strength illustrate how the property range of the lattices can
expand as subsequent levels of hierarchy are added. The charts help to gain insight into
the structural benefit that multiple hierarchies can impart to the macroscopic performance
of a lattice.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Materials with a hierarchical microstructure are very
common in Nature and are a remarkable source of inspira-
tion for the development of new materials. Wood at the
macroscopic level, for instance, can be loosely described
as made of an arrangement of hollow tubes, whose walls
have a microstructure of hemicellulose reinforced with
lignin (Fratzl and Weinkamer, 2007). In bone, up to seven
orders of hierarchical organization can be identified, each
with a defined structural architecture. At the larger length
scale we have the trabeculae, which make up the
cancellous bone; the trabeculae are made of a network of
osteons, which in turn are made of porous hollow fibres,
each consisting of protein fibrils (Rho et al., 1998; Weiner
and Wagner, 1998). It is proven that nesting multiple
hierarchical levels confers significant benefits to the
mechanical properties of biological materials (Chen et al.,
2008; Koch et al., 2009; Meyers et al., 2008; Weinkamer
and Fratzl, 2011; Gibson, 2012). Structural hierarchy in

biological materials is the result of a lengthy optimization
process, through which the material is constantly
prompted by the natural environment to simultaneously
fulfil a broad range of multifunctional and conflicting
requirements (Koch et al., 2009; Fleck et al., 2010). In
wood, the cellular tissue permits the circulation of vital flu-
ids, and confers high compliance and strength to each or-
gan of the plant. The trabecular structure of bones allows
the continuous regeneration and maintenance of the struc-
ture, while bearing the operational loads. Nacre, the mate-
rial of seashells and turtle shells, is made of a complex
multi-layered arrangement of calcium carbonate tablets,
submerged in a soft organic matrix. It has been demon-
strated that the exceptional toughness of Nacre, which
far exceeds that of its constituents, is controlled by the
architecture of its microstructure (Barthelat, 1861; Espin-
osa et al., 2009). The high toughness of Nacre is crucial to
protect the soft organisms enclosed in the shell, and to al-
low the growth of the shield.

Whereas environmental constraints guide the adaptive
process of material formation over millions of years, engi-
neers can resort to additive manufacturing and nanotech-
nology to build, in a fairly short time frame and at
affordable cost, advanced materials with multiple orders
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of microstructural organization (Barthelat, 1861; Fratzl
and Weinkamer, 2007). The latest advance in additive
manufacturing has driven recent research to the under-
standing of the properties of hierarchical materials (Yang
et al., 2002; Stampfl et al., 2004; Gaytan et al., 2009; Par-
thasarathy et al., 2010; Ramirez et al., 2011). The concept
of structural hierarchy has been exploited in engineering
for a long time, one notable example being the Eiffel tower,
a third order hierarchical structure whose relative density,
the ratio between the volume occupied by the structure
and the volume occupied by the solid material, is just
1:2� 10�3 (Lakes, 1993). In the literature, a seminal work
on materials with structural hierarchy is the one by Lakes
(1993), who examined a set of natural and artificial hierar-
chical materials. In this work, Lakes first proposed a com-
pact expression for the stiffness and strength of materials
with isotropic structure at each hierarchical level. Park-
house (1984) also showed that the process of sub-structur-
ing can be recursively applied to each element of a
macrostructure, thus no clear distinction exists, in princi-
ple, between structure and material (Parkhouse, 1984).
The effect of material heterogeneity, which occurs by
structuring a material at multiple length scale with proper-
ties that are dissimilar from one order of scale to another,
was also studied by Yao et al. (2011). In an experimental
and numerical work on the cortical bone of a bovine, Yao
et al. (2011) illustrated the benefit that structural hierar-
chy generates in reducing stress concentration at the nano-
scale, as well in improving strength and energy dissipation.
Sen and Buehler (2011) showed that structural hierarchy
enhances toughness and resistance to crack propagation
in brittle materials without the need to introduce addi-
tional materials. More recently, Fleck et al. (2010) sug-
gested that materials with multiple orders of structural
hierarchy have the potential to further improve the perfor-
mance of lattice materials, in particular to yield higher
stiffness, strength and fracture toughness at lower density.
Sandwich panels with hierarchical cores have been also the
object of recent investigations (Wadley, 1838; Kooistra
et al., 2007). From these works, it emerges that for a given
density the strength of a panel with two levels of hierarchy
in its core can be up to 12.5 times higher than the strength
of a panel with a core with a single hierarchical order. An-
other example is the work of Zhao et al. (2012), who de-
signed, manufactured and tested a hierarchical woven
lattice composite. The lattice walls were made of a woven
textile sandwich composite, and at the highest level, three
lattice topologies were considered: the square, the triangu-
lar and the Kagome lattice. It was shown that the presence
of a level of hierarchy in the lattice elements significantly
enhances the capacity of the lattice to absorb energy. In a
more recent study, Torrents et al. (2012) manufactured
and tested a nickel-based microlattice materials with three
orders of structural hierarchy from the nanometre to the
millimetre scale, and relative density in the range
1� 10�4–8:5� 10�1. A macroscopic stiffness and strength
of one order of magnitude larger than those of existing
materials were observed in the lowest relative density
range, and were attributed to the existence of multiple
hierarchical levels. In another recent work, Rayneau-

Kirkhope et al. (2012) applied fractal theory to design
beams with multiple levels of hierarchy, thereby obtaining
improved buckling strength to mass ratio. The authors also
manufactured a beam with two levels of hierarchy by
means of rapid prototyping to validate the theoretical
results.

In this paper, we use a multiscale approach to quantify
the effect of multiple structural hierarchies on a material
with a lattice architecture. We show that by nesting multi-
ple levels of lattice hierarchies, and by varying the relative
density at each level, the property design space of the solid
material can be expanded to reach unexplored areas of the
material charts. In the first part of the paper, we examine
the stiffness and strength of four planar lattices with high
relative density. As expected, when the relative density of
all levels tends to unity, the overall properties converge to
those of the solid material. The results show that the lattice
topology has a strong impact on the overall properties of
the material. Bending dominated lattices tend to gain more
benefit from the existence of multiple hierarchies, thereby
increasing significantly the specific stiffness. Stretching
dominated lattices, on the other hand, have already an
optimal configuration with respect to stiffness, and thus
do not show a major improvement. With respect to plastic
yielding, a detriment of the overall material strength is ob-
served in high density lattices due to the recursive effect of
stress concentration that occurs at each hierarchical level.
In the second part of the paper, we analyse four three-
dimensional lattices with both open and closed cells, and
examine the stiffness and buckling strength of the
material.

2. The multiscale scheme

As an example of a hierarchical lattice, consider the pla-
nar structure shown in Fig. 1. At the topmost level, h� 3,
the lattice has a hexagonal topology and the material of
the struts is made of a Kagome lattice, which is the hierar-
chical level 2. The struts of the lattice at level 2 hold an-
other level of substructure, where the material consists
of a square lattice. At the level 1 of the hierarchy, the lattice
is made of a uniform solid material, level 0. In this paper,
we are interested in describing how the properties of the
lattice at the top level change if the number of hierarchical
orders and geometrical parameters of the lattices vary at
each level. While the relative density of a hierarchical lat-
tice is simply the product of the relative densities at each
level, this does not hold for stiffness, strength and other
properties. For example, the stiffness of the lattice at a gi-
ven level is governed by the lattice topology, the geometri-
cal parameters of the unit cell at that level, and the
properties of the solid material. Only if we prescribe an iso-
tropic solid material and an isotropic topology at each or-
der, the resulting lattice displays isotropic macroscopic
properties. In this case, we can resort to the compact
expressions proposed by Lakes (1993) for the Young’s
modulus and the strength. However in the general case,
when the parameters of the lattice at each level are dissim-
ilar, it is necessary to follow a bottom up approach starting
from the solid material level, and derive the properties of
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the lattice at each level from the parameters of the mate-
rial at the former level.

It is well known that the macroscopic properties of a
lattice material are governed by the properties of its mic-
roarchitecture, in particular by the geometry of the unit
cell. In principle, a direct numerical approach, which would
involve the individual modelling of each lattice edge or
wall, might be possible. Yet, a detailed model of the lattice
becomes unfeasible if the length scale of the lattice is neg-
ligible with respect to the length scale of the component. In
these cases, a viable strategy is to resort to a homogeniza-
tion approach to calculate the macroscopic properties of
the lattice, and then model the component as a homoge-
neous medium. In previous papers (Vigliotti and Pasini,
2012a,b), the authors presented a multiscale homogeniza-
tion method that allows determine the mechanical proper-
ties of a lattice material. Given a finite element model of
the unit cell, this method enables to calculate the macro-
scopic stiffness tensor of the lattice, and the internal forces
in the lattice elements to assess the lattice strength. This
method is iteratively applied in this paper to calculate
the mechanical properties of lattices with multiple levels
of hierarchy.

We assume that the microscopic stiffness of the mate-
rial at each level is given by the macroscopic stiffness of
the lattice at the former level. As illustrated in Fig. 2, given
the material stiffness, Kli

, and the geometry of the unit cell,
we first find the stiffness matrix of the unconstrained unit
cell, Kuc1 . Then, by applying proper periodic boundary con-
ditions on the unit cell, we calculate the macroscopic stiff-
ness of the lattice at that level, KMi

. Starting from the first
level, where the lattice is made of the solid material
(Kl1

¼ Ks), we evaluate the macroscopic lattice stiffness
tensor, KM1 , at level 1, which represents the microscopic
stiffness of the material at level 2, (Kl2

¼ KM1 ). Kl2
is then

used to obtain the macroscopic stiffness of the lattice at the
second level. This approach can be repeated recursively to

calculate the macroscopic stiffness of the material at the
topmost level.

To obtain the strength of the material, we follow the re-
verse path. As shown in Fig. 3, starting from the topmost
level, where macroscopic boundary conditions are applied,
we solve the structural problem by assuming the domain
as a continuum with stiffness KMn , and we find the strain
distribution at the nth level. Before examining the material
at the ðn� 1Þth hierarchical level, we first verify that mac-
roscopic buckling does not occur at the nth level. Then, let
�ln

be the components of the strain field in the most
stressed location, we solve the microscopic problem at le-
vel ðn� 1Þth considering �Mn�1 ¼ �ln

as the macroscopic
boundary conditions applied to the lattice at the
ðn� 1Þth level. The procedure is iteratively applied until
we reach the first hierarchical level, where the lattice is
made of an unstructured material. Here, the effective stress
in the solid material is calculated to verify whether plastic
yield occurs.

We note that the procedure introduced in this paper is
general; it can be applied to any hierarchical structure with
any arbitrary topology and orientation of the lattice cell at
each level. Here, we focus on hierarchical lattices in which
the topology and orientation of the cells do not change
among levels, and at each level we vary the relative density
at each order of the structural hierarchy.

We remark that the results obtained in this paper are
valid under the assumption that the lattice remains peri-
odic after the deformation. Thus, the findings are strictly
valid for an infinite lattice subjected to a uniform field of
macroscopic deformation. Following an engineering ap-
proach, the results can be considered accurate as long as
the length scale of the lattice is negligible with respect to
the length scale of the macroscopic strain. Recent numeri-
cal investigations (Phani and Fleck, 2008; Fleck et al., 2007)
on discrete lattices showed that a boundary layer region
forms in proximity of localized deformation, such as in

Fig. 1. Microlattice with multiple hierarchical levels.

Fig. 2. Schematic protocol to recursively calculate the material stiffness of a hierarchical material.
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the neighbourhood of cracks, domain boundaries and
where external loads are applied. The extent of this region
depends on the topology of the lattice. For example, for tri-
angulated and hexagonal lattices, the boundary region is
limited to a few strut lengths; for the Kagome, it can be
up to 10 cells. The lattice deformation returns then uni-
form in the material domain outside the boundary layer.
On the base of this observation, we can conclude that at
least one order of magnitude should separate the length
scale of two levels in the structural hierarchy. We note that
the effects of length scale separation among hierarchical
orders is not considered in this paper; thus the results
are valid in the hypothesis of asymptotic separation. Yet,
the findings provide insight into the effect of multiple hier-
archical levels on the stress distribution, and into the exis-
tence of stress concentration in hierarchical lattices.

3. Analysis of high density two-dimensional lattices

If the unit cell is modelled with Euler Bernoulli beams
and the solid material is isotropic, closed-form expressions
for the macroscopic stiffness and the internal forces in the
lattice elements can be obtained as a function of the slen-
derness of the edges and the Young’s modulus of the solid
material. Table 1 reports the stiffness tensor for the lattices
examined in this section (Vigliotti and Pasini, 2012a). For
comparison purposes, the stiffness tensor of an isotropic
material is also included. We remark that the expressions
in Table 1 are valid under the hypothesis that the edges be-
have as Euler Bernoulli beams; this applies to low density
lattice with slenderness ratio k < 1=20. We also observe
that the homogenization method used to derive the
expressions in Table 1 does not retain any information
about the actual length scale of the lattice; in fact, all the
expressions are solely function of the Young’s modulus of
the solid material and of the slenderness of the beams;
hence, the length scale of the lattice does not appear in
the expressions.

An important criterion to classify lattice materials is the
mechanism of deformation of the unit cell members. In
stretching dominated lattices, any external load generates
axial forces in the lattice elements, as opposed to what oc-
curs in bending dominated lattices, where lattice edges de-
form mainly by bending. Table 1 reports the stiffness
matrices of the lattices analysed in this paper: the Kagome
and triangular, which are stretching dominated lattices,
and the square and hexagonal lattices, bending dominated.
Deshpande et al. (2001a) showed that the deformation
mode of a lattice depends on the nodal connectivity and
on the determinacy of the pin-jointed version of the lattice.
If the pin-jointed lattice is kinematically indeterminate, i.e.
if it holds any zero-energy deformation mode, then its

rigid-joint version responds mainly by bending. In general,
a lattice is more compliant for the modes that produce
bending in its element, and stiffer for the modes that are
withstood by axial force.

A suitable mean to compare the stiffness properties of
lattices is to consider the eigenspace of the matrix form
of their stiffness tensor. The largest eigenvalue corresponds
to the deformation mode for which the lattice offers the
highest stiffness; the smallest eigenvalue refers to the
deformation mode for which the lattice is most compliant.
Thus the eigenvalues of the lattice stiffness matrix repre-
sent the actual bounds of the lattice stiffness. For the lat-
tices listed in Table 1, including the solid isotropic
material, the eigenvectors are given by

�1 ¼ ½1;1;0� �2 ¼ ½1;�1;0� �3 ¼ ½0;0;1� ð1Þ

where the components of the strain are �i ¼ ½�x; �y; cxy�, �1

corresponds to equibiaxial strain, �2 corresponds to alter-

Fig. 3. Schematic protocol to recursively calculate the material strength of a hierarchical material.

Table 1
Properties of selected low density two-dimensional lattices. In the above
expressions, k ¼ t=L is the slenderness ratio, where t is the edge thickness
and L is the length. Es is the Young’s modulus of the solid material and m the
Poisson’s ratio. K is the macroscopic stiffness tensor of the lattice that
yields r ¼ K�, with � ¼ ½�x; �y; cxy�, and r ¼ ½rx;ry; sxy�. q� is the relative
density, li are the eigenvalues of the stiffness tensor of the lattice. The
expressions are valid for k < 1=20. For comparative purposes, the corre-
sponding expressions are also given for a uniform isotropic material.

Kagome Hexagonal

K ¼
ffiffi
3
p

Esk
16

k2 þ 6 2� k2 0
2� k2 k2 þ 6 0

0 0 k2 þ 6

2
4

3
5 K ¼ Esk

2
ffiffi
3
p
ðk2þ1Þ

�
3k2 þ 1 1� k2 0
1� k2 3k2 þ 1 0

0 0 2k2

2
4

3
5

q� ¼
ffiffiffi
3
p

k q� ¼ 2ffiffi
3
p k

l1 ¼
ffiffi
3
p

Esk
2

l1 ¼ Eskffiffi
3
p

l2 ¼
ffiffi
3
p

Esk
8 ðk2 þ 2Þ l2 ¼ 2ffiffi

3
p Esk

3

k2þ1

l3 ¼
ffiffi
3
p

Esk
8 ðk2 þ 2Þ l3 ¼ 1ffiffi

3
p Esk

3

k2þ1

Triangular Square

K ¼
ffiffi
3
p

Esk
4

k2 þ 3 1� k2 0
1� k2 k2 þ 3 0

0 0 k2 þ 1

2
4

3
5 K ¼ Esk

1 0 0
0 1 0
0 0 k2

2

2
4

3
5

q� ¼ 2
ffiffiffi
3
p

k q� ¼ 2k

l1 ¼
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3
p

Esk l1 ¼ Esk
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ffiffi
3
p
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ffiffi
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p
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Isotropic material

K ¼ Es
1�m2

1 m 0
m 1 0
0 0 1�m

2

2
4

3
5

q� ¼ 1
l1 ¼ Es

1�m

l2 ¼ Es
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nate tension–compression, and �3 corresponds to pure
shear. For the lattices analysed in this paper, the eigen-
values corresponding to each eigenvector are listed in Ta-
ble 1. As we can observe, the highest eigenvalue
corresponds to the equibiaxial conditions, whereas the
lowest corresponds to the pure shear. Since any arbitrary
macroscopic stress state can be decomposed as a combina-
tion of the eigenvectors of the lattice macroscopic stiffness
matrix, it follows that the lattice will exhibit the largest
deformation according to the mode corresponding to
smallest eigenvalue, which is the most compliant mode.
Eventually, the lattice would fail according to this mode.
Thus, we can consider the stiffness and the strength of a
lattice be governed by the smallest eigenvalue of the stiff-
ness matrix. We also observe that the expressions of the
eigenvalues (Table 1) follow dissimilar scaling laws. For
stretching dominated lattices, all modes produce mainly
axial forces, and all the eigenvalues scale with the first
power of k. On the other hand for bending dominated lat-
tices, the largest eigenvalue corresponding to equibiaxial
strain, for which the lattices respond by axial forces, scales
with k. The smallest eigenvalue, corresponding to shear, for
which the lattice responds with the bending of the edges,
scales with k3. In general, for stretching dominated modes
li scales with k, because the stiffness is governed by the
cross section area. For bending dominated modes, li scales
with k3, as the stiffness is controlled by the second mo-
ment of area of the cross section. It follows that reducing
the relative density, and thus k, by a factor of 10, decreases
the stretching eigenvalues by a factor of 10, and the bend-
ing eigenvalues by a factor of 1000.

For high density lattices, the stubby elements of the
unit cell should be modelled with continuous plane stress
elements. This choice enables not only to account for the
actual stress distribution in the edges if the hypothesis of
slenderness is not met, but also to accurately determine
the joint stiffness and relative density. In contrast in a dis-
crete model, the cross-section properties are assumed to
be concentrated in the centre of the element cross-section,
and overlapping volumes at the joints are not correctly ac-
counted. Fig. 4 shows the finite element meshes of the
topologies under investigation, for three alternative values

of relative density from high to low. In dark blue is shown
the unit cell used to tessellate the plane.

Fig. 5 shows the stiffness maps for lattices with one, two
and three levels of hierarchy. For each lattice, we plot the
highest and the lowest eigenvalue of the stiffness matrix,
normalized by the Young’s modulus of the solid material.
The stiffness of the lattice with one hierarchical level, made
of the solid material, is shown by a continuous line, while
the symbols refer to the properties of the lattices with
nested levels of structural hierarchy. As can be observed,
as the relative density approaches one, the stiffness of all
lattices approaches that of the solid material, i.e. the
largest eigenvalue approaches the equibiaxial stiffness
eigenvalue, l1 ¼ Es=ð1� mÞ, and the smallest eigenvalue
approaches the shear stiffness eigenvalue l3 ¼
Es=ð2ð1þ mÞÞ, where m ¼ 0:3. With reference to the lattices
with one hierarchical level, we also observe a substantial
difference between stretching dominated and bending
dominated lattices. For the former, the equibiaxial and
the shear stiffness scale with the same power law. Thus
no deformation mode prevails over the other as the rela-
tive density decreases. Bending dominated lattices, on
the other hand, tend to be more compliant under shear
loading as q� tends to zero. We remark that due to the
symmetries of the lattices here considered, an equibiaxial
load produces only normal stress in both the stretching
and the bending dominated topologies. In contrast, a shear
macroscopic load produces essentially bending in the
edges of the square and of the hexagonal lattices, whereas
it generates axial forces in the elements of the triangular
and the Kagome lattices. This explains why the shear and
the equibiaxial eigenvalue of stretching dominated lattice
follow the same scaling law, and for bending dominated
the lattice tends to be significantly more compliant as
the relative density decreases. These observations are con-
sistent with the stiffness expressions of low density lat-
tices, obtained with discrete structural elements and
reported in Table 2.

Let us now consider the properties of lattices with two
and three hierarchical levels. In Fig. 5, the points relative to
lattices with two hierarchical levels are shown with an
empty square marker, while the points relative to three

(a) (b)

(c) (d)

Fig. 4. FE meshes of selected two-dimensional lattices for decreasing values q� .
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hierarchical level lattices are shown with a solid diamond.
As can be seen, the existence of more than one hierarchical
level enables to remarkably extend the design space of the
lattice. Lattices with one hierarchical level are restricted to
a curve segment on the property space, whereas lattices

with multiple hierarchical levels can span over a wider re-
gion of the material property space. Furthermore, Fig. 5
illustrates that nesting multiple hierarchical levels pro-
duces dissimilar effects in stretching and bending domi-
nated modes. For the former, the points representing
lattices with two and three hierarchical levels are located
below the solid line. On the other hand, for the latter the
points relative to lattices with higher hierarchy are located
above the line representing the stiffness of plain lattices in
solid material. From this observation, we conclude that the
shear stiffness (represented by the minimum eigenvalue in
Fig. 5) of the hexagonal and square lattices benefits from
the presence of structural hierarchy. In fact, for a given rel-
ative density, configurations with multiple hierarchy pro-
duce stiffer lattices.

Fig. 5 shows also how the properties evolve with the
number of hierarchical levels. An increase in the number
of hierarchical levels is beneficial to bending dominated
deformation modes, whereas it results in a reduced perfor-
mance for stretching dominated modes. To explain the

Fig. 5. Stiffness of selected high density two-dimensional lattices with three hierarchical levels. A solid line identifies the stiffness of a lattice with one
hierarchical level; the empty square markers denote the stiffness of lattices with two hierarchical levels; the solid diamond marker refers to a lattice with
three hierarchical levels. The green colour refers to the stiffness for equibiaxial stress, while the red corresponds to the shear stiffness. The Poisson’s ratio of
the solid material is m ¼ 0:3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Eigenvalues and eigenvectors of the three-dimensional lattices analysed in
the paper. For comparative purposes, the first column reports the eigen-
values of an isotropic homogeneous material.

Solid material Lattice Eigenvector

l1s ¼ Es
1�2m

lh ¼ aþ 2b �h ¼ ½1;1;1;0;0; 0� 1ffiffi
3
p

l2s ¼ Es
mþ1

ld ¼ a� b �d1 ¼ ½1;�1;0;0;0; 0� 1ffiffi
2
p

�d2 ¼ ½1;0;�1;0;0; 0� 1ffiffi
2
p

l3s ¼ Es
2ðmþ1Þ

ls ¼ c �s1 ¼ ½0;0;0;1;0; 0�
�s2 ¼ ½0;0;0;0;1; 0�
�s3 ¼ ½0;0;0;0;0;1�
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dissimilar trends, we first recall that the stretching stiff-
ness of the struts is governed by the ratio ðEsAÞ=L, while
the bending stiffness depends on ðEsIÞ=L3. Since for stretch-
ing dominated lattices, each macroscopic load is withstood
by an axial force, reducing the density always corresponds
to a reduction of the cross-section area, and consequently
to a decrease in stiffness. On the other hand, bending dom-
inated modes can benefit from the presence of multiple
hierarchies, because the density of the strut cross section
can be reduced if the material is hierarchically structured.
This would penalize, in relative terms, the second moment
of area not as much as the area.

We now consider the strength of two-dimensional hier-
archical lattices. Since this section focuses on high density
lattices (k > 1=20), we only consider as a failure mode

plastic yield, rather than buckling. We remark that the Eu-
ler critical stress is given by

rcr ¼ Espv2k2 ð2Þ

where v ¼ 1 for pinned ends, and v ¼ 2 for fixed ends.
Thus for higher density lattices, the Euler critical stress is
higher than the yield stress of the material, and the lattice
failure is governed by yielding. To obtain the strength of a
hierarchical lattice, we must first determine the location
and magnitude of stress concentration which emerges at
each hierarchical level. Fig. 6 shows the stress distribution
in response to a unitary macroscopic shear stress applied
at the component level.

Similar results were also obtained for other stress
states. To obtain the data plotted in Fig. 6, the macroscopic

Fig. 6. Effective stress amplification factor at each hierarchical level. Colours indicate the dimensionless amplification factor between the applied
macroscopic stress and the resulting microscopic stress in the unit cell. At the third hierarchical level, a unitary shear stress is applied, the element with the
highest effective stress is identified and the relative stress is applied at the second level. The same procedure is applied at a lower level of the hierarchy to
obtain the stress regime. (For interpretation of the references to colour in this figure legend, the reader is referred to the electronic version of this article.)

38 A. Vigliotti, D. Pasini / Mechanics of Materials 62 (2013) 32–43
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stiffness of the lattice has been first determined at each
hierarchical level; then a unitary pure shear macroscopic
load has been applied at the third hierarchical level and
the macroscopic stress distribution, shown in the first col-
umn of the plots in Fig. 6, has been obtained. Here, the ele-
ment with the highest effective stress has been identified
(circles in the plots) and the component of its strain state
has been used as boundary condition to determine the
stress distribution in the lattice at level 2. With an equiva-
lent procedure, we calculate the stress of the lattice mate-
rial at level 1. We note that at each level the stiffness of the
lattice depends on both the cell topology at that level and
the macroscopic stiffness of the lattice at the lower level of
the hierarchy. In addition, the microscopic stress applied at
a location of the lattice in a given level is controlled by the
macroscopic stress acting on the lattice at the upper level.
For this reason, we can conclude that the problem is
completely coupled. At each hierarchical level, the stress

distribution in the lattice depends on the properties of
the lattice at the other levels.

Fig. 7 maps the design space of the yield strength for
lattices with more than one hierarchical level. In the figure,
we plot the ratio re=res, which represents the load that
must be applied at the highest hierarchical level to produce
a unitary effective stress in the most stressed location of
the solid material. We observe that the existence of multi-
ple hierarchical levels is not beneficial for the lattice topol-
ogies under investigation. The points corresponding to
lattices with three levels of hierarchy are located below
the points corresponding to two hierarchical level lattices,
which are below the solid line representing the lattices
with one hierarchical level. We also note that the yield
strength of the lattices, at each hierarchical level, scales
approximately with the first power of the relative density,
as expected in a first order approximation. This occurs be-
cause for a given macroscopic load, the stress scales with

Fig. 7. Yield strength of selected high density two-dimensional lattices with three hierarchical levels. A shear macroscopic stress is applied at the third
hierarchical level. In contrast to the stiffness (Fig. 6), for strength the regions occupied by each hierarchical level are quite distinct; the points relative to
higher hierarchical levels are always located below the points representing lower hierarchical levels. Thus, the performance of the lattice decreases with
higher levels of hierarchy.
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the effective area, over which the load is distributed and
which corresponds to the relative density. Yet as shown
in Fig. 6, material substructuring has the effect of generat-
ing uneven stress distribution even if a uniform stress is
applied. As a result, high stresses localize in small areas,
an effect that is further amplified by structural hierarchy.

4. Analysis of low density three-dimensional lattices

Fig. 8 shows the three-dimensional topologies exam-
ined in this work: the body centred cube (BCC); the regular
octet, an optimal truss topology that has been extensively

studied in the literature (Deshpande et al., 2001b; Wallach
and Gibson, 2001); the cuboctahedron, the only stretching
dominated Archimedean polyhedron; and the truncated
octahedron, which is the only Archimedean polyhedron,
capable of regularly tessellating the space with a unitary
packing factor (Torquato and Jiao, 2009). The truncated
octahedron is also of special interest since it is very similar
to the tetradecahedron, the polyhedron that minimizes the
surface to volume ratio. It differs from the tetrakaidecahe-
dron only for a slight curvature of the faces, and approxi-
mates the shape under which foams self-arrange (Gong
et al., 2005). Among the lattices shown in Fig. 8, the trun-

(a) (b) (c) (d)

Fig. 8. Three-dimensional topologies under investigation.

Fig. 9. Shear stiffness of three-dimensional topologies. The solid line refers to lattices with a single hierarchical level; the dots to lattice with multiple
hierarchical levels.

40 A. Vigliotti, D. Pasini / Mechanics of Materials 62 (2013) 32–43



Author's personal copy

cated octahedron is the only bending dominated topology
in the open cell configuration, while the others are all
stretching dominated in the open cell configuration. All lat-
tices are stretching dominated in their closed cell configu-
ration (Vigliotti and Pasini, 2012b).

For each topology, we calculate the stiffness and the
buckling strength of open and closed cell lattices with up
to three orders of structural hierarchy. The lattice elements
are modelled as beams and shells; hence it is necessary to
enforce the following limits on the slenderness ratio of the
edges and of the walls of the lattice:

L
d
6 20; 0 6

t
d
6

1
2

ð3Þ

where t is the thickness of each beam, represented by the
thick lines in Fig. 9, which we assume have a square cross
section, L is the edge length and d is the thickness of the
walls. The first inequality guarantees that the Euler–Ber-
noulli assumption for the beams is fulfilled; the second is
to prevent an overestimation of the cell stiffness due to
the overlapping portion of adjacent cell elements. To com-
pare the lattice performance for different configurations,
we fix the slenderness ratio as L

d ¼ 20 and let t
d vary in the

range defined in (3). This choice accounts for the effect of
the thickness of the walls on the macroscopic properties
of the lattice.

Because of the symmetry of the lattices analysed in this
section, there exist nine mutually orthogonal planes of
symmetry; hence the stiffness matrix can be written in a
reference system with the axes defined by the intersection
of the symmetry planes (Phani and Fleck, 2008) as

Kmat ¼

a b b 0 0 0
b a b 0 0 0
b b a 0 0 0
0 0 0 c 0 0
0 0 0 0 c 0
0 0 0 0 0 c

2
666666664

3
777777775

ð4Þ

where the expressions for a, b and c depend on the topol-
ogy and on the properties of the solid material (Vigliotti
and Pasini, 2012a). The eigenvalues and the eigenvectors
of Kmat are reported in Table 2. As can be observed, the
eigenspace of the stiffness matrix of the lattices examined
in this section is similar to that of the lattices analysed in
the previous section. In particular, the largest eigenvalue,

Fig. 10. Shear buckling strength for lattices with one, two and three hierarchical levels.
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lh, corresponds to the hydrostatic macroscopic stress and
has single multiplicity. The eigenvalue relative to alternate
compression-tension stress, ld, has both algebraic and
geometric multiplicity equal to two and defines deviatoric
stress states without shear. The eigenvalue corresponding
to shear, ls, has both algebraic and geometric multiplicity
equal to three and corresponds to macroscopic stress
states of pure shear. Similarly to the previous section, the
three-dimensional lattices show the highest compliance
for a given shear macroscopic load. Thus in this section
we only consider the performance of the lattice for shear
stress.

In Fig. 9, the shear stiffness is plotted as a function of the
relative density for lattices with one, two and three hierar-
chical levels. The solid line refers to lattices with one
hierarchical level, while the dots refer to lattices with mul-
tiple hierarchical levels. The point of the solid line with the
smallest relative density refers to the open-cell lattice con-
figuration; for closed-cell lattices, the thickness of the walls
increases with the relative density. Fig. 9 shows that for
low-density lattices each region pertaining to a given hier-
archical order is almost disjointed from the others; only a
minor overlap exists among them. Since in the closed-cell
configuration, all three-dimensional lattices behave as
stretching dominated, the lattices with one hierarchical
level generally tend to perform better than the lattices with
multiple hierarchical orders, as shown by the dots below
the solid lines. We also observe that at very low density
the shear stiffness of the truncated octahedron tends to
rapidly decrease as the bending dominated mode of its
open-cell configuration prevails over the stretching domi-
nated behaviour of its close-cell configuration.

Fig. 10 shows the strength charts for an applied shear
load. Since the focus here is on lattices with low relative
density at each level, buckling is considered as the relevant
failure mode. The lattice strength is obtained by applying a
unitary macroscopic load at the topmost level, the critical
loads at each level are calculated, and the smallest critical
load is selected as a measure of the global lattice strength.
As can be observed in Fig. 10, the presence of multiple hier-
archical levels has the effect of expanding the material
properties space. For lattices with a single hierarchical or-
der, the attainable values of the strength are limited to a
curve segment that spans one order of magnitude on the
abscissa and ordinate axes of the chart. In contrast, the
points relative to lattices with two and three hierarchical
levels occupy wider regions that span two and three orders
of magnitude.

5. Conclusions

A scheme based on multiscale mechanics has been ap-
plied to determine the stiffness and strength of planar
and three-dimensional lattices with multiple orders of
structural hierarchy. Four two-dimensional high-density
lattices and four three-dimensional low-density lattices
have been examined. The analysis has shown the remark-
able impact that nesting multiple hierarchical levels has
on the stiffness and strength of a hierarchical lattice. The
findings provide insight into how the properties evolve

with the number of hierarchical orders. From the results,
it emerges that the property space of a material can be con-
siderably extended without penalizing its specific struc-
tural performance and without the need to recur to other
materials.

The effect of introducing multiple hierarchical orders is
mainly controlled by the lattice topology at each hierarchi-
cal level. Bending dominated lattices benefit from a multi-
level sub-structuring to a larger extent than the stretching
dominated. The presence of micro-voids in bending domi-
nated lattices contributes to reduce the cross-section area
without severely penalizing the second moment of area.
Thus, the bending stiffness can be preserved efficiently,
and increasingly optimized as the relative density de-
creases. For strength, we have observed that the presence
of multiple hierarchical levels in a perfectly periodic lattice
produces stress concentrations that reduce the yield
strength of the material at the macroscale.

The method presented in this paper can help to guide
the design of ultra-lightweight microlattices, as well as it
can be applied to other hierarchical materials, such as
nacre and other biological tissues, which do possess a peri-
odic – although not cellular – microarchitecture.
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