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Abstract Optimized design of composite structures re-
quires simultaneous optimization of structural perfor-
mance and manufacturing process. Such a challenge
calls for a multi-objective optimization. Here, a gen-
erating multi-objective optimization method called
normalized normal constraint method, which attains
a set of optimal solutions and allows the designer to
explore design alternatives before making the final
decision, is coupled with a local-global search called
constrained globalized bounded Nelder–Mead method.
The proposed approach is applied to the design of a
Z-shaped composite bracket for optimization of struc-
tural and manufacturing objectives. Comparison of the
results with non-dominated sorting genetic algorithm
(NSGA-II) shows that when only a small number of
function evaluations are possible and a few Pareto
optima are desired, the proposed method outperforms
NSGA-II in terms of convergence to the true Pareto
frontier. The results are validated by an enumeration
search and by exploring the neighbourhood of the final
solutions.
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Nomenclature

n Number of design variables
m Number of objectives
�n Design space of a problem with n design

variables
S Feasible region of the design space

(S ⊂ �n)
Z Criterion space

(
Z = �f (S ) ⊂ �m

)

�x∗ A Pareto optimum solution in the design
space

X∗ All Pareto optimal points in the design
space

�f ∗ = �f (x∗) A Pareto optimum in criterion space

f̄ Normalized objective
φ(x) Probability of sampling a point x ∈ S
r Number of non-dominated solutions ob-

tained during the optimization process

1 Introduction

Because of their excellent mechanical properties, lami-
nated fibrous composite materials are successfully used
in a wide range of structural applications. However, due
to the large number of design variables and objectives,
the design of composite materials is more complex
than the design of uniform isotropic materials. This
is not only due to the anisotropic material properties
but also because of the strong interconnection between
design and manufacturing issues. Thus, a common way
to simplify the composite design problem is to separate
structural design from manufacturing design (Le Riche
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et al. 2003) and performing the latter just after the
former is completed. However, researches by Wang
and Costin (1992), Costin and Wang (1993), Henderson
et al. (1999), Wang et al. (2002), Le Riche et al. (2003),
and a series of papers by Park et al. (2001, 2003, 2004,
2005) have shown that a better overall performance
is obtainable if structural and manufacturing objec-
tives are simultaneously optimized. This task requires
solving a multi-objective optimization (MOO) prob-
lem, which is generally more challenging than solving
a single-objective optimization problem and involves
more computational effort.

This paper proposes using a method called nor-
malized normal constraint method (NNCM) to simul-
taneously optimize several objectives in a composite
design problem. To obtain each of the numerous pos-
sible solutions to this problem, NNCM performs a
single-objective optimization. For the single-objective
optimization, a local-global search called constrained
globalized Nelder–Mead (CGBNM) is suggested. The
proposed method is applied to the design of a Z-shaped
composite bracket, the goal of which is to find the
fiber orientations and the geometrical parameters that
maximize the strength and minimize the weight and the
spring-in after demoulding. The results are compared
to the ones obtained by one of the most successful
multi-objective evolutionary optimization methods in
the literature, called non-dominated sorting genetic
algorithm (NSGA-II; Deb et al. 2002).

In the following sections, the main terminology and
definitions used in MOO are provided before reviewing
the applications of these methods in design of compos-
ite materials. The proposed MOO method, its internal
single-objective method, and the two parameters used
to measure the performance of a MOO method are
explained in Section 3. Section 4 applies the proposed
method to the design of a Z-shaped composite bracket
and compares the results with NSGA-II. Validation
of the numerical results, discussion, and concluding
remarks are given at the end.

2 MOO and design of composite materials

In many applications, such as design with composite
materials, usually there is more than one objective in-
volved; this type of optimization problems is generally
called multi-objective optimization (MOO) problems.
This section introduces the terminology used in MOO
and reviews its applications in design of composite
materials.

2.1 Multi-objective optimization

The process of systematically and simultaneously opti-
mizing several objectives is called multi-objective opti-
mization (MOO). A MOO problem is mathematically
expressed as:

minimize �f (x) = {
fi (x) : �n �→ �;
i = 1, ..., m; m > 1

}

subject to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g j (x) ≥ 0 ; {
g j (x) : �n �→ �;
j = 1, ..., J; J ≥ 0

}

hk (x) = 0 ; {
hk (x) : �n �→ �;
k = 1, ..., K; K ≥ 0

}

(1)

The objectives in this problem are in contrast to each
other, and there is no unique solution to a problem
with more than one conflicting objective. There exist
a number of solutions which all are optimum. These
solutions are called Pareto optimum solutions (Pareto
1906). The definition of Pareto optimality is based on
domination that follows.

Definition 1 (domination) Considering the optimiza-
tion problem formulation in (1), a solution x1 ∈ S domi-
nates a solution x2 ∈ S, if x1 is smaller than x2 in at least
one objective and is not bigger with respect to the other
objectives.

x1 dominate x2 ⇔
{∀i : 1 ≤ i ≤ m ⇒ fi (x1) ≤ fi (x2)

∃ j : 1 ≤ j ≤ m : f j (x1) < f j (x2)
∧

(2)

Definition 2 (Pareto optimal) Considering the prob-
lem formulation (1), a solution x∗ ∈ S is Pareto optimal
if and only if it is not dominated by any other solution
in S. Collection of all Pareto solutions is called Pareto
frontier, represented by X∗.

x∗ ∈ X∗ ⇔ � ∃x ∈ S : x dominate x∗ (3)

There are numerous methods for multi-objective
optimization, and they can be classified in many ways
according to different criteria. A comprehensive review
of these methods can be found in Miettinen (1999), Deb
(2001), and Marler and Arora (2004). For the purpose
of this paper, we categorize these methods into two
distinct groups:

1. Non-generating methods that find only one Pareto
solution for a given MOO problem. The Pareto so-
lution may be selected with or without considering
the user’s preferences. If the user preferences are
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required, they may be obtained at the onset of the
optimization process (method with priori prefer-
ences) or interactively as the optimization process
goes on (methods with progressive preferences).

2. Generating methods that generate a set of Pareto
optimal solutions among which the user chooses
the final solution according to his/her preferences.
These methods are also called methods with poste-
riori preferences.

This section reviews the application of different
MOO methods to the design of composite materials,
which is the focus of this paper.

2.2 Multi-objective design of composite materials

Current literature on MOO of composite materials
reveals mainly the use of non-generating methods.
Although these are preferred for their simplicity and
for being less time consuming; there are attempts of
using generating methods to design a composite part.
Both methods are reviewed in this section.

Method of weighted-sum is the most common
MOO method used in composite design. In this non-
generating method, the objectives are combined into
a single-objective problem using user-defined weight-
ing factors. The resulted single-objective optimization
problem may be solved by any optimization technique.
Examples of application of this method in stacking
sequence design of composite materials can be found
in Adali (1983), Walker et al. (1997), Manne and Tsai
(1998), Walker and Smith (2003), Deka et al. (2005),
and Mohan Rao and Arvind (2005), and Abouhamze
and Shakeri (2007). Kere et al. (2003) and Kere and
Koski (2002) also used the weighted-sum, but only to
reduce their multi-objective optimization problem to
a bi-criterion problem. The most sensitive objective
was used as the first criterion, while the others were
collected in a weighted sum as the second criterion.
The resulted bi-criterion problem was solved by using a
layer-wise approach, in which all possible permutations
of adding a new layer to the laminate were examined,
and the one that made the maximum improvement in
either of the two criteria was accepted.

Another strategy, also classified among non-
generating methods, is to optimize one criterion while
constraining the others to user-defined limits. These
methods are generally known as “ε-constraint
methods” and are commonly used in composite design
optimization. Wang and Costin (1992) and Costin and
Wang (1993) found the minimum weight design of a
composite shell by applying constraints on manu-
facturing objectives. Henderson et al. (1999) integrated

manufacturing considerations as constraints into the
design optimization of a blade stiffened panel. Park
et al. (2001) applied constraints on processing time and
panel stiffness to minimize the weight of a plate made
by RTM. Wang et al. (2002) optimized the number
of ribs and spars in an aerospace composite structure
using weight as the primary design drive and the
cost parameter as a constraint. (Le Riche et al. 2003)
used the same method but frequently exchanged the
objective and constraints.

Reference point method is another non-generating
MOO method that has been used in composite design
applications (Saravanos and Chamis 1992; Kere and
Lento 2005). This method minimizes an achievement
function based on a reference point. The reference
point, defined by the designer, is a feasible or infea-
sible point in the criterion space that is reasonable or
desirable to the designer. The achievement function
may be the Euclidian distance to the reference point or
any other user-defined measure. Appropriate selection
of the reference point has a major effect on the final
solution obtained by this method.

There are some non-generating methods with no
user-defined preferences; an example is the min-max
strategy, in which only the critical objective is opti-
mized. For instance, if the goal of a problem is to
maximize the strength of several components within
an assembly, only the part with the minimum strength
is considered in each step of the optimization process.
The limitation is that this method requires the objec-
tives to have comparable values. It is particularly useful
for stress or stiffness minimization (Suresh et al. 2007).

Non-generating methods generally require an in-
sight into the problem because the preference parame-
ters (e.g. weighting factors, constraint values, reference
point, etc.) must be set by the designer. These meth-
ods find only one optimal solution; however, they can
also be used to generate a set of Pareto optimal solu-
tions by varying the user-defined preference parame-
ters (Watkins and Morris 1987; Adali et al. 1996; Mohan
Rao and Arvind 2005), but the resulted solutions may
not be uniformly spread along the Pareto frontier. In
contrast, generating methods have the advantage of
not requiring any user-defined preferences and gener-
ating a set of optimum solutions. The penalty, on the
other hand, is that they usually need a great deal of
computation. Non-dominated sorting genetic algorithm
(NSGA) and particle swarm are examples of methods
falling in this group that are used for optimization of
composite materials.

Non-dominated sorting genetic algorithm (NSGA)
was proposed by Srinivas and Deb (1995) as an evo-
lutionary method based on genetic algorithm (GA).
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NSGA differs from simple GA only in the way
the selection operator works. Before selection, indi-
viduals are ranked according to the level of non-
domination. Each solution assigned a fitness equal to
its non-domination level (first is the best level), thus
minimization of the fitness promotes non-dominated
solutions and eventually reaches the Pareto frontier.
The original NSGA has no control on the spread of
the obtained solutions. Deb et al. (2002) overcome
this problem by adding a crowded control parameter
to NSGA. The new method, called NSGA-II, is an
elitist non-dominated sorting GA that provides a set
of non-dominated solutions uniformly distributed on
Pareto frontier. Using mathematical test functions, Deb
et al. (2002) reported that NSGA-II outperforms other
contemporary multi-objective evolutionary methods
in terms of convergence to the true Pareto fron-
tier and achieving a uniform distribution of solutions.
An integer-coded version of NSGA-II was used by
Pelletier and Vel (2006) to find Pareto-optimal designs
for a composite laminates.

Particle Swarm Optimization (PSO) is another
population-based, stochastic optimization method used
in design of composite materials. Inspired by the flock-
ing behaviour of the birds, each solution in this method
is called a “particle” and resembles a bird among
others. Each bird adjusts its position according to its
own flying experience (best solution in its individual
history) and the flying experience of the others (the
best solution among all particles). There are several
methodologies using PSO to handle problems with mul-
tiple objectives, among them Vector Evaluated PSO
(VEPSO), a multi-swarm variant of PSO, was used by
Omkar et al. (2008) to minimize weight and cost of
laminated composite components. VEPSO considers m
swarms, each consisting of n particles. Each swarm is
exclusively evaluated according to one of the objective
functions. The adjustment process takes place accord-
ing to the flying experience of the particle itself, and
the particles in one of the other swarms. Although
its performance is reported to be “satisfactory”; no
comparison with other methods has been found by the
authors.

A population-based generating MOO, such as
NSGA-II or VEPSO, is computationally time consum-
ing because it needs numerous function evaluations.
Composite design problems have the particularity of
having a time consuming function evaluation process,
which usually involves performing several finite ele-
ment analysis. Therefore, in many cases, it may not
be possible or desirable to perform as many func-
tion evaluations as is required for a population-based
method to converge. The other property of population-

based methods is that they usually return a set of non-
dominated solutions almost as large as their population
size. To facilitate the selection of the final solution, a
designer may prefer to have only a few solutions with
a low computational cost rather than a large number
of alternative solutions with a high computational cost.
For these situations, this paper proposes a combination
of a local single-objective optimization technique and
a MOO approach called NNCM. The next section ex-
plains the proposed method, the single-objective opti-
mization method and how the latter is embedded in the
former.

3 Optimization procedure

Among generating methods, a survey of which can be
found in Marler and Arora (2004), Miettinen (1999),
and Deb (2001), normalized normal constraint method
(NNCM; Messac et al. 2003) is implemented in this
work. This method normalizes the design space and
introduces new constraints. Considering the new con-
straints, optimization of only one of the objectives re-
turns a non-dominated solution. When several of these
single-objective optimization problems are solved, sev-
eral non-dominated solutions are obtained. The differ-
ence between this method and varying user preferences
in a non-generating method is that here the set of
constraints are introduced to spread the final solutions
uniformly in the criterion space. This section explains
the NNCM method, the single-objective optimization
method and their integration. Finally, two parameters
are presented to measure the performance of a MOO
method.

3.1 Normalized normal constraint method

Normalized normal constraint method (NNCM) is an
algorithm for generating a set of evenly spaced solu-
tions on a Pareto frontier (Messac et al. 2003). This
method yields Pareto optimal solutions, and its per-
formance is independent of the scale of the objective
functions. NNCM method and some related definitions
are presented in this section.

Definition 3 (utopia point) Considering optimization
problem (1), a point �f o ∈ Z in the criterion space is
called a utopia point if and only if:

f o
i = min

x

{
fi (x)| x ∈ S

}; i = 1, ..., m. (4)

Because of contradicting objectives, the utopia point is
unattainable.
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Definition 4 (anchor point) A non-dominated point
�f ∗∗ ∈ Z is an anchor point if and only if it is Pareto

optimal and at least for one i = 1, 2, ..., m; f ∗∗
i =

min
x

{ fi (x)| x ∈ S}.

The first step in NNCM is to normalize the de-
sign space. For this purpose, the utopia and the
anchor points are required. These points are found by
optimizing only one of the objectives at a time. After
finding these points, the criterion space is normalized
using the following transformation.

f̄i = fi − f o
i

f max
i − f o

i
(5)

f max
i = max

{
fi (x) ; x /∈ X∗} (6)

The normalization process locates the utopia point
at the origin and the anchor points at the unit coordi-
nates. Figure 1a shows the original criterion space and
the Pareto frontier of a generic bi-criterion problem.
Figure 1b represents the Pareto frontier of the same
problem after normalization.

The next step is to form the utopia hyperplane, which
is a hyperplane with vertices located at the anchor
points. For a bi-criterion problem, the utopia hyper-
plane is a line as shown in Fig. 1c. Next, a grid of evenly
distributed points on the utopia hyperplane is gener-
ated. The number of points in this grid is defined by the
user. Figure 1c shows, for example, a grid of six points
on the utopia line. If these points are projected onto
the Pareto frontier, several Pareto optimum solutions
are obtained. To find the Pareto optimum solution cor-
responding to each point in this grid, a single-objective
optimization problem must be solved. This problem

entails minimizing one of the normalized objectives
with an additional inequality constraint. For example,
the Pareto optimum solution corresponding to point
P in Fig. 1c can be found by minimizing f̄2 while the
feasible region is cut by the line passing through this
point and perpendicular to the utopia line. The feasible
region of this single objective optimization problem is
shown in Fig. 1c. The solution of this problem, f̄ ∗,
is a Pareto optimum solution for the original multi-
objective problem. Other Pareto optimal points can be
found by repeating the same procedure for other points
on the utopia line.

If the objective functions have many local optima
or the Pareto frontier is discontinuous, it is possible to
have some dominated solutions among the final solu-
tions. Composite stacking sequence design problem is
well known for having many local optima; therefore,
dominated solutions are expected. Messac et al. (2003)
proposed a filter that removes all dominated solutions,
after all the single-objective optimizations are com-
pleted. This filter requires a pair wise comparison of
all the solutions. Since this algorithm aims at finding
a small number of solutions on the Pareto frontier
(e.g. around ten points) the performance of the filtering
algorithm is of minor concern and not discussed here.

3.2 CGBNM for single-objective optimization

In order to find each Pareto optimum solution, NNCM
requires solving a single-objective optimization prob-
lem. Since this algorithm is proposed for solving a
composite design problem, in which the gradients of
the objectives are not available, a direct optimization
method is required. On the other hand, considering
the time consuming process of structural and manu-
facturing analysis of a composite part, an evolutionary
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algorithm may not be a good choice due to the low
rate of convergence. Therefore, a local-global search
called CGBNM (Ghiasi et al. 2008) is used for this pur-
pose. CGBNM, which stands for constrained globalized
bounded Nelder–Mead, is an improved version of the
algorithm introduced by Luersen and Le Riche (2004).
This method is using several restarts of a simplex opti-
mization method called Nelder–Mead (N–M) method
(Nelder and Mead 1965). The restart procedure uses
a probability distribution function that initiates N–M
local search from new points far from previously sam-
pled ones. CGBNCM is capable of finding several local
optima for a multi-modal function. It has been shown
that CGBNM is more efficient than an evolutionary
algorithm, when a small number of function evaluations
are possible (Ghiasi et al. 2008).

The flowchart of CGBNM is shown in Fig. 2. The
main blocks marked by the gray pattern and the
bold border, are: “Nelder–Mead local optimizer” and
“Restart procedure”. The first finds a local optimum,
while the second restarts the local search to confirm
its convergence to a true optimum or to help finding
another local solution. The maximum number of itera-
tions for each restarts and the total number of function
evaluations are defined by the user at the onset of the
process.

Nelder–Mead (N–M) sequential optimization meth-
od, proposed by Nelder and Mead (1965), is among
the most popular direct methods for local optimization
of unconstrained problems. N–M method compares the
objective values at a set of n + 1 points called a simplex.
The simplex is moved toward the optimum solution
by four operators: reflection, expansion, contraction, or
shrinkage. Reflection operator mirrors the worst point
in the simplex with respect to the other points in that
simplex. This is the basic step that moves the simplex
toward a better solution. If the new point is better
than the old point, the move is expanded by using
the expansion operator, else it is contracted by using
the contraction operator. If neither of these operators
could find a better point, the simplex is shrunk toward
its best point. The process is terminated when the
simplex converges to an optimum. It has been shown
that this method is effective in practice by producing
a rapid initial decrease in function values (Lagarias
et al. 1998), but the local optimum found is dependent
on the initial simplex (Humphrey and Wilson 2000).
Therefore, in CGBNM a probability function is used
to restart the local search from new points far from
previously inspected regions in the design space.

The restart procedure re-initializes N–M in order to
ensure that the solution found in the last try is a local

Fig. 2 Restart and
convergence tests linking
in CGBNM
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optimum (small test or large test) or to find a new
local optimum (probabilistic restart). The small test and
large test restart the N–M from the last solution ob-
tained with a simplex of size as or al, user-defined para-
meters. If the new small or large simplex returns to the
same solution, the result is saved as a local optimum,
and the N–M is initialized with a probabilistic restart.
The probabilistic restart initiates the local search from
a simplex located in the region that has not been pre-
viously explored. This strategy eases the finding of a
new local optimum. The probabilistic restart procedure
uses a one-dimensional adaptive probability function
called variable variance probability (VVP). Using VVP,
probability of sampling point x is calculated as follow:

φ (x) = 1√
2πσ

(
1 − e−(d2

min

/
2σ 2)

)
(7)

dmin = min
i=1,...,I

⎧
⎨

⎩
di =

√
∑n

k=1

(
xk,i − xk

xku − xkl

)2
⎫
⎬

⎭
(8)

xi s in this equation are the points in the design space
that are previously sampled. dmin is the minimum non-
dimensional Euclidian distance between point x and
one of these points. The variance of the normal proba-
bility density, σ , is updated in each restart by using the
following equation:

σ = 1

3 n
√

m
(9)

Then a selection pool is created, in which each point
has a number of copies proportional to its probability
value. Therefore, points far from previously sampled
points have more chance to be selected as an initial
point for the next local optimization.

N–M method in its original form is unable to deal
with nonlinear constraints; however, a composite de-
sign problem is often constrained by several nonlinear
constraints, such as failure criteria, and others that may
emerge by using NNCM. Therefore, it is important that
the selected optimization method be able to handle
these constraints. In CGBNM, this goal is achieved by
using a repair procedure that brings the infeasible so-
lutions into the feasible region. This procedure consists
of a backtracking scheme; when a new point generated
by reflection or expansion violates one of the nonlinear
constraints, the new point is moved toward the original
feasible point such that the distance between these two
points is reduced by a factor α ∈ (0,1). The procedure
is terminated when either a feasible point is found or

a predetermined number of trials is reached. If the
procedure fails to find a new feasible point, the original
point is kept, and the simplex is shrunk towards its best
vertex.

3.3 Performance measures

Two performance metrics used by Deb et al. (2002) to
measure the performance of a non-generating MOO
method are presented in this section. These two para-
meters are used later to compare the proposed method
with NSGA-II. The first metric, γ , measures the ex-
tent of convergence to a known set of Pareto-optimal
solutions, while the second, �, measures the extent
of spread achieved among obtained solutions. Both
metrics are positive numbers and are desired to be as
small as possible.

Convergence of a set of solutions to a known Pareto
frontier is measured by the average of the minimum
distance of all the solutions from the Pareto frontier. To
find the minimum distance from the Pareto frontier, a
grid of uniformly distributed points on Pareto frontier
are generated. The minimum distance of a solution
from one of the points in this grid is used as the
minimum distance to Pareto frontier. The convergence
metric, γ , is mathematically defined as below:

γ = 1
p

p∑

i=1

di; di = min
j

∥
∥∥ �fi − �f ∗

j

∥
∥∥ (10)

In this equation, ‖ ‖ shows the Euclidian distance
between the two points in the criterion space. Figure 3a
illustrates how this metric is calculated for a bi-criterion
problem.

The second metric, �, provides information about
the extent of spread achieved among the obtained so-
lutions. It is desired that a set of solutions obtained
by a generating MOO spans the entire Pareto-optimal
region and is uniformly distributed along the Pareto
frontier. The following equation is used to calculate this
metric for a bi-criterion problem:

� = l0 + l p + ∑p−1
i=1

(
li − l̄

)

l0 + l p + (p − 1) l̄
(11)

l̄ = 1
p−1

∑p−1

i=1
li (12)

As shown in Fig. 3b, l0 and l p of the above equa-
tion are the Euclidian distances between the extreme
solutions and the anchor points. li is the Euclidian dis-
tance between two solutions. This metric is zero if the
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Fig. 3 a Convergence metric
γ , b diversity metric,
� (Deb et al. 2002) Feasible Region
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points.

4 Composite test case and numerical results

In this section, NNCM is applied to the simultane-
ous structural and manufacturing optimization of a
Z-shaped composite bracket shown in Fig. 4. The
bracket is made of 16-ply balanced symmetric laminate
of graphite/epoxy (AS4/8552) with fiber orientation[±θ1/±θ2±θ3/±θ4

]
s. The goal is to find geometries and

lamination sequences that minimize weight and spring-
in and maximize strength. The part should not fail or
delaminate anywhere and should satisfy a safety factor
of 1.5 against failure and 2 against delamination. De-
lamination is calculated in the curved regions where the
angle shape causes high interlaminar normal stresses.
The vertical deflection of less than 1 mm and the spring-
in of less than 0.5◦ are strictly required for an acceptable
design. The semi-analytical models of first-ply-failure,
delamination, deflection, and spring-in used for the
optimization process are described in Appendix 1.

4.1 Optimization set up

The MOO method described in section three is used
to solve this composite design problem. The objective
functions are divided into two groups of manufacturing
objectives and structural objectives. Considering these
two group of objectives, NNCM is used to find the
Pareto solutions.

The first group of objectives deals with the structural
performance including the weight minimization and
strength maximization. The two objectives are grouped
into one weighted-sum as:

min fs = W
(
g
)

5 g
− R

1.5
(13)

where W is the weight, and R is the load factor. The
second group of objectives deals with the manufactur-
ing aspect and includes only minimization of spring-in
after demoulding.

min fm = |�θ | (14)

Fig. 4 Geometrical variables
and applied loads on the
composite bracket

N1=500 N/m 

N3=100 N/m 

M1=50 N.m/m

τ 12=300  N/m 
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By incorporating the set of inequality constraints de-
scribed in the problem definition, the optimization
problem is formulated as follow:

min
{

fs (x) , fm (x)
}; x = {

θ1, θ2, θ3, θ4, e, sr, r
}

Subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
R (x) ≥ 1.5 ∧ D (x) ≥ 2.0

∧ Sr (x) ≥ 10 mm ∧ |δ (x) | ≤ 1 mm

∧ |�θ (x)| ≤ 0.5◦}

θi ∈ [−90◦, 90◦] ; i = 1, ..., 4;
e ∈ [0, 0.15] (m) ;
sr ∈ [2, 5] (cm) ;
r ∈ [2, 20] (mm) ;

(15)

Where D(x) in this equation is the delamination factor.
Sr, e, and r are the geometrical parameters shown in
Fig. 4. δ(x) is the maximum vertical deflection, and
finally �θ(x) is the spring-in.

The first step of NNCM is to find the utopia and
the anchor points. To this end, two single-objective
optimization problems must be solved; one optimizes
only the structural objectives while the manufacturing
objective is set free to take any value. The second
problem minimizes only the manufacturing objective
and the structural ones are ignored. We refer to the
solution of the first problem as structural-only solu-
tion

(
f ∗∗
s

)
, and the solution of the second problem as

manufacturing-only solution
(

f ∗∗
m

)
.

f ∗∗
s = (0, |−0.149|) = (0, 0.149) ;

f ∗∗
m =

(
9.47 g

5 g
− 1.51

1.5
, 0

)
= (0.886, 0) ; (16)

The utopia point does not correspond to any physical
design and is calculated as follow.

�f O = (
f O
s , f O

m

) ; f O
s = 6.99 g

5 g
− 2.15

1.5
= −0.037;

f O
m = |−0.0048| = 0.0048. (17)

Figure 5 shows the two anchor points, f ∗∗
s and f ∗∗

m ,
in the normalized criterion space. The corresponding
lamination sequences and 2D cross-section shapes are
also represented beside each point. Crossed-line di-
agrams in this figure and Fig. 6 represent the fiber
orientations in the bracket. Vertical lines represent the
fibers running along the length of the bracket, whereas

Sf

mf  

O 

Utopia Line 

1 

**
sf  

**
mf  C

B

A

Pareto Frontier  

W=7.0gr 
R=2.2 

Δθ=-0.15o

W=9.5gr 
R=1.5 

Δθ=0.00o

1 
W=9.5gr 
R=1.5 

Δθ=0.00o

Fig. 5 Utopia point, two anchor points, utopia line and the user-
selected points for composite bracket design problem

horizontal ones show the fibers running along the width
of the bracket (normal to the cross-section).

Regarding the objective values at utopia and anchor
points the normalization is performed using the follow-
ing transformation.

f̄s = fs (x) + 0.037

0.923
; f̄m = fm (x) − 0.005

0.144
(18)

4.2 Numerical results

NNCM requires solving a set of single-objective min-
imization problems with an additional nonlinear con-
straint. The additional nonlinear constraint makes the

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Anchor pt minStr minMfg

mf

S
f

C

B

A

1

2

Fig. 6 Graphical representation of 2D cross-section and lami-
nation sequences of the solutions found on the Pareto frontier.
Crossed-line diagrams represent the fiber orientations
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feasible region tighter, thus the solution to the single-
objective minimization problem would be different
than the anchor points. Here, two different scenarios
are considered. In the first scenario, called minStr, the
structural objective is minimized. In contrast, the sec-
ond scenario, called minMfg, minimizes the manufac-
turing objective. Each scenario uses three values for the
constraints, seeking three points on the Pareto frontier
(i.e. A, B, and C in Fig. 5).

The optimization problem in the first scenario, min-
Str, is formulated as:

min f̄s (x) ; x = {θ1, θ2, θ3, θ4, e, sr, r}

S.T. :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R (x) ≥ 1.5

D (x) ≥ 2.0

Sr (x) ≥ 10 mm

|δ (x) |≤ 1 mm

|�θ (x)| ≤ 0.5◦

f̄s − f̄m + a ≥ 0 (19)

The last constraint in (19) is added by NNCM, in
which the constant a in is set to −0.5, 0, and 0.5 to obtain
points A, B, and C in Fig. 5. The optimization problem
for the second scenario, minMfg, is identical to the first
one but involving minimization of f̄m and replacing the
last constraint with f̄m − f̄s + a ≥ 0.

Figure 6 shows the results obtained in two scenar-
ios, minStr and minMfg, each including 2,000 function
evaluations. As expected, the points obtained in these
two scenarios are similar regarding the objective values.
Points A, B, and C in this figure are shown by their
normalized objective values. The optimized geometry
(left) and lamination sequence (right) of the corre-
sponding bracket are also shown for each data point.

Table 1 summarizes the objective values of the op-
timal solutions. As the design point moves from the
structural-only design (point 1) toward manufacturing-
only design (point 2), (a) the geometry gradually
changes from small brackets to elongated ones and (b)
the fiber orientations are changed from laminates in
which fibers are distributed in all directions to laminates
where fibers are mostly aligned at 0◦.

The Pareto curve helps the designer better under-
stand the trade-off between the conflicting objectives.

Table 1 The performance criteria at the two anchor points and
at three other points on the Pareto frontier

Point 1 A B C 2

Weight (g) 7.0 7.0 6.9 7.0 9.5
Deflection (mm) 0.046 0.073 0.099 0.166 0.133
Load factor 2.2 2.1 2.0 1.8 1.5
Spring-in (degree) −0.15 −0.14 −0.07 −0.02 −0.00

For instance, the results have shown that starting from
the best manufacturing design, penalizing only 10%
the manufacturing objective (e.g. moving from a point
with f̄m = 0 to f̄m = 0.1), the structural objective will
improve more than 75% (e.g. is reduced from f̄s = 1
to f̄s = 0.25). However, this is not valid at the point
with f̄s = 0.25, where 10% penalty on manufacturing
objectives results in almost equivalent improvement in
structural performance.

4.3 Validation and interpretation of the results

In this section, the optimization procedure is validated
by comparing the results to the ones obtained by a
rough enumeration search over the design domain and
a non-dominated sorting genetic algorithm (NSGA).
The local optimality of the results is also demon-
strated by analysing the neighbourhood of the optimal
solutions.

This problem, similar to all other composite design
problems, has many local optima and the global op-
tima are unknown. Thus, to judge the validity of the
results we resort to an enumeration search. Obtaining
all possible fiber orientations and geometries requires
numerous function evaluations (i.e. 1010 function evalu-
ations for this problem). Here, we decide to examine all
possible designs with fibers oriented at 0◦, ±45◦, and 90◦
each with 64 different geometries, which still requires
more than 5,000 function evaluations.

Figure 7 shows the results of the enumeration search
in the normalized criterion space beside the solutions
found by NNCM. The solutions obtained by NNCM
are located at the boundary of the feasible region. The
unexplored region, right of these solutions, is resulted

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Anchor pt minStr minMfg Enumeration Search

mF

A 

B

C

SF

Fig. 7 Enumeration search and the points on Pareto frontier that
obtained by NNCM
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Table 2 Performance parameters, γ and �, and number of non-
dominated solutions, r ′, obtained by NNCM and NSGA-II

γ � r′

NNCM 0.2415 0.9077 7
NSGA-II: p20g100 0.3110 0.8193 20
NSGA-II: p50g40 4.9185 1.4724 48
NSGA-II: p100g20 0.4449 1.0788 70

by the choice of having examined fiber orientations
only at 0◦, ±45◦, and 90◦. A valuable result is that the
solutions found by NNCM dominate the optimum solu-
tions found by the enumeration search, and it captures
the overall shape of the boundary of the feasible region.
For instance, at the lower-right corner of this figure,
the feasible region is tangent to the horizontal axes.
This property is also reflected by plotting a line passing
through solutions found by NNCM.

4.3.1 Comparison with NSGA

Evolutionary algorithms are commonly used in design
of composite materials and also to solve MOO prob-
lems. Thus, here the result obtained by NNCM is com-
pared to those obtained by NSGA-II. The comparison
is made with respect to the performance parameters
described in Section 3.3. Both methods are applied to
the composite design problem with maximum 2,000
function evaluations.

Performance of NSGA-II is dependent on the pop-
ulation size and the number of generations. Three dif-
ferent cases were examined and the results are shown
in Table 2. Each case is labelled with the population
size and number of generations; for instance the case
labelled as p50n40 has the population size of 50 chro-

mosomes and the optimization process was continued
till 40 generations. Number of generations and popula-
tion sizes are selected such that, in each case, the total
number of 2,000 function evaluations is performed. The
optimal solutions obtained are presented in Fig. 8a.
This figure clearly shows that the solutions obtained
by NNCM dominate all NSGA-II’s solutions. Table 2
compares the same results in terms of the performance
metrics introduced in Section 3.3. Since the real Pareto
frontier of the composite design problem is unknown,
the origin and the two anchor points are used to calcu-
late �. This table shows that the NNCM can achieve
a better convergence to the Pareto frontier than all
NSGA-II runs with almost similar level of spread to the
best results obtained by NSGA-II.

One of the advantages of the improved GBNM,
which makes it comparable to population-based meth-
ods, is that it not only returns one global solution, but
also provides a set of local optima called a local set.
Non-dominated points in the local set can be used to
gain more insight into the shape of the Pareto frontier.
Figure 8b shows the local optima found during the
optimization of the problem at hand. The local set
provides additional non-dominated solutions.

4.3.2 Analysis of the neighbourhood
of the optimal solutions

Verifying the global optimality of the solutions is a
very difficult task; however it is possible to investigate
the neighbourhood of the solutions to verify their local
optimality. The neighbourhood of a solution is specified
by all possible solutions that can be obtained when
only one of the design variables is varied. As exam-
ples, this is applied to points A, B, C. Figure 9 shows

Fig. 8 a Comparison of the
Pareto frontier found by
NNCM and NSGA,
b all local solutions obtained
by NNCM coupled with
GBNM

(a) (b)
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Point A in minStr scenario
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Fig. 9 Neighbourhood of points A, B, and C in normalized criterion space (FS vs. = Fm)

the neighbourhood of the optimal solutions when all
design variables are changed one at a time. Appar-
ently, all the solutions found are non-dominated in that
neighbourhood.

In this section, the design of a composite bracket has
been simultaneously optimized for structural and man-
ufacturing objectives. The results were validated by
comparing them with an enumeration search and an
evolutionary optimization method and also by explor-
ing the neighbourhood of the solutions. The result not
only attests to the ability of the algorithm to grab the
general form of the Pareto frontier but also shows
that the proposed MOO is able to find better results
than those obtained with an evolutionary MOO (i.e.
NSGA-II). The trade-off between structural and manu-
facturing objective also proves the necessity of a multi-
objective approach for composite material design.

4.4 Discussion

The overall performance of a method is controlled
by the parameters defined by the user. This section
discusses how user-defined parameters may affect the
performance of NNCM and NSGA-II.

If NSGA-II is used with a limit on the total number
of function evaluations (N), the only parameter left
for the designer to select is the population size (p), or
the number of generations (g) considering that N = pg.
In NSGA-II, the user does not have control over the
number of non-dominated solutions, q, which is usually
known, by experience, to be close to the population
size, q ≈ p (see Table 2 for examples). If only a small
number of non-dominated solutions are required, a
small population should be utilized. This choice is at the
risk of losing the diversity of the population and con-
verging to non-optimal solutions. On the other hand,
using a large population size reduces the number of
generations, but it may not converge to a promising

set of solutions. Similarly, the total number of function
evaluations (N) performed in NNCM is

N = q (2 lr) , (20)

q Number of non-dominated solutions desired by the
user;

l Number of N–M iterations for each local optimiza-
tion process;

r Number of restarts in CGBNM

If q is small, which is the case we are interested in,
there would be enough number of function evaluations
for each single objective optimization to find a point
close to the Pareto frontier. This explains why in the
numerical example solved in this paper NNCM outper-
forms NSGA-II. If more non-dominated solutions are
required, NSGA-II will be a better choice.

Regarding the number of function evaluations, N,
and number of non-dominated points required, q, it is
suggested to use NNCM when q and N are small. In
contrast, when N and q are large numbers, NSGA-II is
recommended. The threshold between small and large
values for N and q is problem dependent and must
be found by experience. Figure 10 plots these regions.
The top left quarter corresponds to the case where a
small number of function evaluations is required to
obtain a large number of non-dominated solutions. In
this region, none of the considered algorithms are able

N

q  

NNCM NNCM 
NSGA-II

NSGA-II NSGA-II

Fig. 10 Suggested optimization method regarding the maxi-
mum number of function evaluations (N) and number of non-
dominated solutions required (q)
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to obtain a good solution, but comparatively NSGA-II
has been observed to yield better results. In contrast,
at the bottom right quarter of the chart, both methods
are expected to have a similar performance, although
NSGA-II might be selected due to its simplicity.

For a function with a large number of local optima,
the local search embedded in NNCM may converge to
a non-optimal solution. This drawback amplifies even
more when non-linear constraints are imposed by the
problem. Figure 8b shows that, among all the local
solutions found by CGBNM, many are located on the
boundary of the feasible region (the imaginary lines
passing through points A, B, and C in Fig. 8b). To make
a more efficient single-objective optimization search by
CGBNM, a more efficient constraint handling method
is required.

5 Conclusion

In order to find a set of Non-dominated solutions for a
composite design problem, the normalized normal con-
straint method (NNCM) and a local-global optimiza-
tion method called constrained globalized bounded
Nelder–Mead (CGBNM) are coupled in this paper. The
proposed method is compared to an evolutionary multi-
objective optimization method by solving the simulta-
neous structural and manufacturing optimization of a
Z-shaped composite bracket. This type of problem has
two following characteristics: (1) function evaluation is
time consuming, thus performing only a small number
of function evaluation is possible, (2) the designer does
not need a large number of non-dominated solutions.
For such problems, the NNCM is found to be more
efficient than a population-based method, considering
the proximity to the true Pareto frontier and the uni-
form spread of the solutions. Comparing the results
with an enumeration search and investigation of the
neighbourhood of the optimal solutions also confirms
that the proposed method is able to accurately and

efficiently find non-dominated solutions very close to
the Pareto frontier. The solutions found by the pro-
posed algorithm clearly dominate the ones obtained by
NSGA-II. The corresponding geometries, fiber orien-
tations, and performance criteria of the optimal solu-
tions are plotted, showing that the trade-off between
structural and manufacturing objectives exist and must
be considered during the design process. Having a set
of non-dominated solution helps the designer to better
understand this trade-off and have some alternative
designs before making the final decision.

Appendix 1

Modeling and simulation of the composite bracket

To evaluate the objectives of a composite bracket
design problem, an appropriate processing simulation
and structural analysis are required. For this purpose,
a semi-analytical model is developed in MATLAB©.
The model should be able to evaluate objectives and
constraints including the load factor (R), the vertical
deflection (δ), the spring-in (�θ), and the delamination
factor (D).

The load factor is calculated using first-ply-failure
of the classical lamination theory and Hashin stress-
based failure criterion (Tsai 1992). Vertical deflection is
calculated by numerical integration and energy method
(Megson 1999). The spring-in, which is the angular
deformation of a part after demoulding, is a function of
cure shrinkage and thermal expansion, and is calculated
using the following equation:

�θ = θ

[(
(αl − αt) �T

1 + αt�T

)
+

(
φl − φt

1 + φt

)]
(21)

where �θ is spring-in, θ is the angle of the bracket,
�T is the temperature difference between the cure

Fig. 11 Approximate
distribution of interlaminar
normal stress at a free edge
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Fig. 12 Interlaminar normal
stresses in the curved region
of an angle-shaped flange

–

temperature and the room temperature. φ and α are
coefficients of shrinkage and thermal expansion, sub-
scripts l and t, respectively, stand for longitudinal and
through thickness directions.

Delamination is a critical mode of failure in compos-
ite materials, and it is due to the interlaminar stresses
between subsequent laminates. In a flat plate, interlam-
inar stresses are created only by the free-edge effect
(Pagano and Pipes 1989), but in a curved part, the 3D
stress field also creates significant interlaminar stresses
that may cause delamination at the curved regions. In
this paper, we adopt a convenient, albeit crude, model
of free edge interlaminar stresses by Pagano and Pipes
(1989). In this model the interlaminar normal stress is
estimated as shown in Fig. 11.

Interlaminar normal stresses created by the angle-
shape effect are shown in Fig. 12. Sequentially solving
the equilibrium equations for all layers, starting form
the innermost layer results in an interlaminar normal
stress between layers n and n + 1:

σz,n−(n+1) =
n∑

k=1

σx,ktk
/

R +
n∑

k=1

tk (22)

where, ti shows the thickness of ith layer, and R is
the inner radius of the curved part. Interlaminar shear
stresses are of minor importance with respect to inter-
laminar normal stresses (Tsai 1992), thus an approxi-
mation of shear stress in a prismatic member under a
transverse load is used.
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