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This paper examines the multiphysics of multilayered and functionally graded cylinders
subjected to steady-state hygrothermomagnetoelectromechanical loading. The cylinder is
assumed to be axisymmetric, infinitely long, and with either hollow or solid cross section
that is, both polarized and magnetized radially. The multiphysics model is used to investi-
gate the effect of moisture, temperature, magnetic, electric, and mechanical loadings.
The influence of imperfectly bonded interfaces is also accounted for in the governing
equations. Exact solutions of differential equations are obtained for each homogenous
layer of the multilayered cylinder. The results are verified with those available in litera-
ture for a homogenous infinitely long cylinder and can also be applied to study the multi-
physics of thin circular disks. Maps are presented for solid and hollow cylinders to
visualize the effect of hygrothermomagnetoelectromechanical loading, heterogeneity of
bonded layers, and imperfectly bonded interfaces. The plots offer insight into the behav-
ior of heterogeneous magnetoelectroelastic media in a steady state hygrothermal field.
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1 Introduction

Multiphysics is defined as the simulation of interactions among
physical fields acting simultaneously. It is typically described by a
set of partial differential equations, which are often strongly
coupled [1]. As stated by Brown and Messina [2], the coupled
models can often span multiple length scales, an additional com-
plexity that makes multiphysics problems challenging. The
coupled interaction of physical phenomena may involve elastic,
electric, magnetic, thermal, hygroscopic, chemical, and optical
fields. This scenario might be observed in natural (wood, bone,
and liquid crystals) or synthetic (piezoelectric, piezomagnetic,
magnetoelectroelastic (MEE), and polyelectrolyte gels) smart
materials [3]. Multiphysics analysis is a critical step to several
applications involving structural health monitoring, intelligent
structures, energy harvesting and green energy production, optics,
space vehicles, and self-powered biomedical devices [4]. While
the coupling of four physical fields has been investigated for lami-
nated hygrothermopiezoelectric plates [4], only recently the con-
current influence of multiple fields, such as moisture, temperature,
magnetic, electric, and mechanical, has been object of investiga-
tion [5].

In recent years, several studies have implemented microscopic
and macroscopic multiphysics analysis. Huang and Kuo [6]
obtained the MEE tensor analogous to the Eshelby tensor for elas-
tic ellipsoidal inclusions. Later, Li and Dunn [7] employed the
micromechanics Mori–Tanaka mean field approach to obtain the
effective moduli of heterogeneous MEE multiphysics media.
Thermally induced vibration of hygrothermopiezoelectric

laminated plates and shells was analyzed by Raja et al. [8].
Georgiades et al. [9] applied the three-dimensional (3D) microme-
chanical model based on the asymptotic homogenization of thin
smart plates reinforced by piezoelectric bars. Subsequently, Has-
san et al. [10] obtained a micromechanical model for smart 3D
composites reinforced by a periodic piezoelectric grid. The behav-
ior of parallel permeable cracks in an MEE medium subjected to
antiplane shear loading was investigated by Zhang et al. [11].
Kundu and Han [12] studied the hygrothermoelastic buckling
responses of laminated shells using the nonlinear finite element
method (FEM). Chen [13] developed a theory of nonlinear ther-
moelectroviscoelasticity with inclusion of hysteresis, aging, and
damage effects. Mahato and Maiti [14] used active fiber compo-
sites to control undesirable responses caused by hygrothermal
conditions. Babaei and Akhras [15] obtained a closed-form solu-
tion for the behavior of a radially polarized piezoelectric cylinder
working at different temperature. To compare the coupled multi-
physics theories, Akbarzadeh et al. [16] studied the thermopiezoe-
lectricity in a functionally graded piezoelectric (FGP) medium.
The influence of hygrothermal effects on free vibration of lami-
nated plates with temperature- and moisture-dependent material
properties was investigated by Kumar et al. [17]. An efficient
beam model was developed by Wang and Yu [18] to study the
multiphysics behavior of MEE structures using the variational as-
ymptotic method. A closed-form solution was obtained by Akbar-
zadeh et al. [19] for classical coupled thermoelasticity in
functionally graded (FG) rectangular. Faruque Ali and Adhikari
[20] analyzed the application of a vibration absorber supple-
mented with a piezoelectric stack for energy harvesting. Recently,
Kondaiah et al. [21] studied pyroelectric and pyromagnetic effects
on multiphysics responses of MEE cylindrical shells.

Multiphysics simulation of multilayered composites with per-
fectly/imperfectly bonded interfaces is of great significance for
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applications where there is a need to inhibit debonding, crack ini-
tiation, and fracture as the discontinuity of material properties
across interfaces and bonding imperfections play an important
role in the structural response. Multilayered smart composites
with stacked layers of integrated piezoelectric/piezomagnetic
fibers or bonded piezoelectric/piezomagnetic layers to base matri-
ces are being used for their low density and superior mechanical
and hygrothermal properties as well as sensing and actuation
[22,23].

Multiphysics responses of smart composites have attracted the
interest of several researchers. For instance, Xu et al. [24] pre-
sented a closed-form solution for coupled thermoelectroelastic
responses of multilayered plates. Pan [25] derived exact solutions
for anisotropic, simply supported, MEE multilayered plates. A
general stress analysis for multilayered cylinders under hygrother-
mal loadings was developed by Sayman [26]. Shi et al. [27] stud-
ied multilayered piezoelectric beams based on the linear
electroelasticity theory. Balamurugan and Narayanan [28] pre-
sented a piezolaminated element for finite element analysis of
multilayered plates. A simply supported MEE cylinder was inves-
tigated by Daga et al. [29] using Fourier series expansion and
FEM. Wang et al. [30] studied the dynamic behavior of a perfectly
bonded multilayered smart composite using a hybrid method. The
effective matrices of a multilayered beam with FG layers were
derived by Murin and Kutis [31] using FEM. Wang et al. [32]
obtained closed-form solutions for a transversely isotropic multi-
layered MEE circular plate. A multilayered piezoelectric/piezo-
magnetic composite with periodic interface cracks was studied by
Wan et al. [33]. A new finite element model was presented by
Milazzo and Orlando [34] based on an equivalent single-layer
model for MEE multilayered structures. Brischetto [35] proposed
a refined two-dimensional (2D) model for the hygrothermoelastic
analysis of doubly curved sandwich shells.

The interface between two bodies is imperfect in the presence
of discontinuities when, for example, microstructural defects such
as voids and cracks exist on the boundaries [36]. To model dilute
composites with circular inclusions and imperfectly bonded inter-
faces, Bigoni et al. [37] applied an asymptotic scheme. Icardi [38]
investigated the static, free vibration, and buckling of laminated
plates with bonding imperfections. Chen et al. [39] explored the
bending and free vibration of an imperfectly bonded piezoelectric
rectangular laminate using the state-space approach. Adrianov
et al. [40] proposed an asymptotic approach to simulate imperfect
bonding in composite materials. Later on, Mitra and Gopalak-
rishnan [41] studied the wave propagation in a single-walled car-
bon nanotube with discontinuous connection. The MEE responses
of multiferroic composites with imperfect interface were also
studied by Wang and Pan [42]. Melkumyan and Mai [43] investi-
gated interface waves caused by imperfectly bonded piezoelectric
and piezomagnetic half-spaces. Fan and Sze [36] proposed a
micromechanics model based on the self-consistent scheme for
imperfect dielectric bodies. Finally, Wang and Zou [44] devel-
oped a model to analyze a piezoelectric cantilevered energy har-
vester with imperfectly bonded interfaces.

FG smart materials with continuous transition of material prop-
erties throughout the domain have been proposed to avoid failure
and discontinuity of multiphysics fields in conventional laminated
smart composites. FG structures also benefit from their multiphy-
sics properties on the surfaces that enhance their compatibility for
various applications [45,46]. Accordingly, investigation on multi-
physics analysis of FG intelligent structures is essential for pro-
moting their applications.

Since the emergence of functionally graded materials (FGMs),
abundant papers studying their structural behavior have been pub-
lished. Pan and Han [47] presented an exact solution for FG MEE
plates using the Stroh-type solution formalism. Zhou et al. [48]
studied the behavior of a crack in an FG MEE medium. Wang and
Ding [49] obtained a closed-form solution to investigate the tran-
sient response of FG MEE hollow cylinders. The fracture of FGP
materials with a dielectric crack model was investigated by Jiang

[50]. Shen [51] studied the nonlinear bending of FG nanocompo-
site plates reinforced by carbon nanotubes. A closed-form solution
for bonded FG MEE half-planes was derived by Lee and Ma [52].
Akbarzadeh et al. [53] investigated the thermal induced vibration
of an FG plate via the hybrid Laplace–Fourier transform. The
static, dynamic, and free vibration analysis of doubly curved FG
panels resting on Pasternak-type elastic foundation was studied by
Kiani et al. [54]. Panda and Sopan [55] solved finite element equa-
tions for nonlinear analysis of thermoelectroelastic FG sector
plates. More recently, Kiani et al. [56] presented a scheme for
active control of doubly curved FG panels.

The hygrothermopiezoelectric model was introduced by Smitta-
korn and Heyliger [57]; later, Akbarzadeh and Chen [5] developed
a hygrothermomagnetoelectroelastic model and applied for the
analysis of a homogenous cylinder. Yet, the multiphysics analysis
of multilayered or functionally graded smart cylinders rested on an
elastic foundation with plane strain/plane stress condition has not
been considered. This paper examines the steady-state hygrother-
momagnetoelectroelastic response of multilayered and FG cylin-
ders with plane strain/plane stress conditions. The composite
cylinders are assumed to be axisymmetric, radially polarized, and
radially magnetized, in the presence of a hygrothermal field. The
governing differential equations are first decoupled and then solved
in an exact form by imposing perfect/imperfect interfacial condi-
tions as well as boundary conditions. Finally, the influence of mul-
tiphysics loading, bonding imperfections, heterogeneity, and
nonhomogeneity indices are visualized in maps that help to gain
insight into multiphysics responses of the heterogeneous cylinders.

2 Problem Definition and Governing Equations

This section presents the governing equations, including consti-
tutive, potential field, and conservation equations, for steady-state
hygrothermomagnetoelectroelastic responses of an axisymmetric
cylinder with multilayered or FG cross section (Fig. 1).

We assume a multilayered hollow MEE cylinder with plane
strain or plane stress condition subjected to a combined disturb-
ance of hygroscopic, thermal, magnetic, electric, and mechanical
loading. The MEE cylinder experiences on its inner and outer
surfaces changes in moisture concentration m, temperature #,
magnetic potential u, electric potential /, and pressure P (Fig. 1).
We consider also that these loadings are applied solely on the
outer surface.

To derive the governing equations and boundary conditions in a
general format, we consider the MEE cylinder as rotating with
angular velocity x, about the z-axis in a cylindrical coordinate
system (r, h, z), and resting on a Winkler-type elastic foundation
with foundation stiffness kw. The number of layers is represented
by N; Rn n ¼ 1; 2;…;Nð Þ is the outer radius of the n-th layer and
R0¼ a is the inner radius for the first layer and Rn¼ b is the outer
radius of N-th layer of the hollow multilayered MEE cylinder. For
a solid multilayered MEE cylinder constructed of an solid core
and N-1 hollow cylindrical layers, R0¼ 0.

In linear hygrothermomagnetoelectroelasticity, the constitutive
equations for each layer of a multilayered composite can be writ-
ten as [5,58]

rðnÞij ¼ C
ðnÞ
ijkle
ðnÞ
kl � e

ðnÞ
kij E

ðnÞ
k � d

ðnÞ
kij H

ðnÞ
k � bðnÞij #

ðnÞ � nðnÞij mðnÞ

D
ðnÞ
i ¼ e

ðnÞ
ijk eðnÞjk þ 2

ðnÞ
ij E

ðnÞ
j þ g

ðnÞ
ij H

ðnÞ
j þ cðnÞi #ðnÞ þ vðnÞi mðnÞ

B
ðnÞ
i ¼ d

ðnÞ
ijk eðnÞjk þ g

ðnÞ
ij E

ðnÞ
j þ lðnÞij H

ðnÞ
j þ sðnÞi #ðnÞ þ tðnÞi mðnÞ

� ðn ¼ 1; 2; :::;NÞ (1)

where rðnÞij , D
ðnÞ
i , B

ðnÞ
i , eðnÞij , E

ðnÞ
i , H

ðnÞ
i , #ðnÞ, and mðnÞ

ðn ¼ 1; 2;…;N i; j; k; l ¼ 1; 2; 3Þ are stress tensor, electric dis-
placement vector, magnetic induction vector, strain tensor, elec-
tric field vector, magnetic field vector, temperature change, and

041018-2 / Vol. 81, APRIL 2014 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 11/19/2013 Terms of Use: http://asme.org/terms



moisture concentration change, respectively; C
ðnÞ
ijkl, e

ðnÞ
ijk , d

ðnÞ
ijk , 2ðnÞij ,

g
ðnÞ
ij , lðnÞij , bðnÞij , nðnÞij , cðnÞi , vðnÞi , sðnÞi , and tðnÞi are, respectively, elas-

tic, piezoelectric, piezomagnetic, dielectric, electromagnetic, mag-
netic permeability, thermal stress, and hygroscopic stress coefficient
tensors and pyroelectric, hygroelectric, pyromagnetic, and hygrom-

agnetic coefficients vectors. In addition, #ðnÞ ¼ TðnÞ � T0 and

mðnÞ ¼ CðnÞ � C0 where in, T and C represent the absolute tempera-
ture and moisture concentration, and T0 and C0 are the stress-free
temperature and moisture concentration, respectively. The thermal
stress and hygroscopic stress coefficient tensors are also related to

the elastic coefficient tensor C
ðnÞ
ijkl, the thermal expansion coefficient

tensor aTðnÞ
ij , and the moisture expansion coefficient tensor bCðnÞ

ij by

bðnÞij ¼ C
ðnÞ
ijkla

TðnÞ
kl and nðnÞij ¼ C

ðnÞ
ijklb

CðnÞ
kl .

The linear potential field equations, including strain-
displacement and quasi-stationary electromagnetic field equations,
are specified as [59]

eðnÞij ¼
1

2
u
ðnÞ
i;j þ u

ðnÞ
j;i

� �
; E

ðnÞ
i ¼ �/ðnÞ;i ; H

ðnÞ
i ¼ �uðnÞ;i (2)

in which u
ðnÞ
i , /ðnÞ, and uðnÞ stand, respectively, for displacement

vector, electric potential, and magnetic potential; the comma rep-
resents the differentiation operator. Furthermore, in the absence of
body force, free charge density, and current density, the equations
of motion and Maxwell’s electromagnetic field are written as [60]

rðnÞij;j ¼ qðnÞd u
ðnÞ
i;tt ; D

ðnÞ
i;i ¼ 0; B

ðnÞ
i;i ¼ 0 (3)

where qðnÞd stands for mass density and t represents time. The gov-
erning equations (1)–(3) could be further simplified for axisym-
metric plane strain and plane stress conditions. The constitutive
equations (1) for axisymmetric, transversely isotropic, radially
polarized, and radially magnetized materials with plane strain
condition (infinitely long cylinder) are written as [5]

rðnÞrr ¼ c
ðnÞ
33 uðnÞ;r þ c

ðnÞ
13

uðnÞ

r
þ e
ðnÞ
33 /ðnÞ;r þ d

ðnÞ
33;ru;r �bðnÞ1 #ðnÞ � nðnÞ1 mðnÞ

rðnÞhh ¼ c
ðnÞ
13 uðnÞ;r þ c

ðnÞ
11

uðnÞ

r
þ e
ðnÞ
31 /ðnÞ;r þ d

ðnÞ
31 uðnÞ;r �bðnÞ3 #ðnÞ � nðnÞ3 mðnÞ

rðnÞzz ¼ c
ðnÞ
13 uðnÞ;r þ c

ðnÞ
12

uðnÞ

r
þ e
ðnÞ
31 /ðnÞ;r þ d

ðnÞ
31 uðnÞ;r �bðnÞ3 #ðnÞ � nðnÞ3 mðnÞ

DðnÞr ¼ e
ðnÞ
33 uðnÞ;r þ e

ðnÞ
31

uðnÞ

r
�2ðnÞ33 /ðnÞ;r � g

ðnÞ
33 uðnÞ;r þ cðnÞ1 #ðnÞ þvðnÞ1 mðnÞ

BðnÞr ¼ d
ðnÞ
33 uðnÞ;r þ d

ðnÞ
31

uðnÞ

r
� g

ðnÞ
33 /ðnÞ;r �lðnÞ33 uðnÞ;r þ sðnÞ1 #ðnÞ þ tðnÞ1 mðnÞ

(4)

where u ¼ ur is the radial displacement and c
ðnÞ
pq ¼ C

ðnÞ
ijkl,

e
ðnÞ
pq ¼ e

ðnÞ
ijkl, d

ðnÞ
pq ¼ d

ðnÞ
ijk , bðnÞp ¼ bðnÞij and nðnÞp ¼ nðnÞij (i; j;k; l¼ 1;2;3;

p;q¼ 1;2;…;6). The equation of motion and Maxwell’s electro-
magnetic equations can also be rewritten as [61]

rðnÞrr;r þ
1

r
ðrðnÞrr � rðnÞhh Þ ¼ qðnÞd u

ðnÞ
;tt ; DðnÞr;r þ

1

r
DðnÞr ¼ 0

BðnÞr;r þ
1

r
BðnÞr ¼ 0 (5)

It is worth noting that for rotary cylinders with angular velocity
x about the z-axis, we have: u;tt ¼ �rx2. For plane stress condi-
tion (thin circular disk), the constitutive equations (4) with
rðnÞzz ¼ 0 should be modified; however, Eq. (5) is valid for plane
stress. The analogy of hygrothermomagnetoelectroelastic coeffi-
cients for plane strain and plane stress is illustrated in Table 1.
More details are given in Refs. [62] and [63].

It is worth mentioning that the procedure presented in this paper
is for an axisymmetric infinitely long cylinder with plane strain
condition; yet, the above formulation can be used by redefining
the physical constants in Table 1 to obtain the multiphysics
responses of an axisymmetric thin circular disk.

In steady-state hygrothermomagnetoelectroelastic analysis,
hygrothermal fields are decoupled from the other physical fields.
Therefore, temperature and moisture concentration distributions
are found separately using the following Fourier heat conduction
and Fickian moisture diffusion equations [64]:

q
ðnÞ
i ¼ �k

TðnÞ
ij #

ðnÞ
;j ; p

ðnÞ
i ¼ �k

MðnÞ
ij m

ðnÞ
;j (6)

in which q
ðnÞ
i , p

ðnÞ
i , k

TðnÞ
ij , and k

MðnÞ
ij are heat flux and moisture flux

vectors and thermal conductivity and moisture diffusivity tensors,
respectively. These equations along with the energy conservation
equation and the conservation law for the mass of moisture are
used to obtain the following hygrothermal equations for axisym-
metric and steady-state condition [65]:

1

r
rkTðnÞ#ðnÞ;r

� �
;r
¼ 0 Heat conductionð Þ (7a)

1

r
rkMðnÞmðnÞ;r

� �
;r
¼ 0 Moisture diffusionð Þ (7b)

where, kT(n) and kM(n) are, respectively, isotropic thermal conduc-
tivity and moisture diffusivity coefficients.

3 Solution Procedure

For perfectly and imperfectly bonded multilayered composites,
we use closed-form expressions for homogenous hollow or solid

Fig. 1 Rotating hollow multilayered MEE cylinder resting on elastic foundation
and its multiphysics boundary conditions; subscripts “i” and “o” indicate inner
and outer surfaces
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layers with appropriate hygrothermomagnetoelectroelastic interfa-
cial boundary conditions. The resulting model might be used for
design and optimization of smart composite components and
could provide a benchmark to verify alternative multiphysics the-
ories and analysis. Moreover, the results could be used to model
smart composites with temperature- and moisture-dependent ma-
terial properties [5,58].

3.1 Homogenous Multiphysics Layer. For each homoge-
nous layer of the cylinder shown in Fig. 1, we use Eqs. (4) and (5)
to obtain the following set of ordinary differential equations,
which are coupled and second-order and coupled:

c
ðnÞ
33 r2uðnÞ;rr þ c

ðnÞ
33 ruðnÞ;r � c

ðnÞ
11 uðnÞ þ e

ðnÞ
33 r2/ðnÞ;rr þðe

ðnÞ
33 � e

ðnÞ
31 Þr/

ðnÞ
;r

þd
ðnÞ
33 r2uðnÞ;rr þðd

ðnÞ
33 � d

ðnÞ
31 ÞruðnÞ;r �bðnÞ1 r2#ðnÞ;r

�ðbðnÞ1 �bðnÞ3 Þr#ðnÞ � nðnÞ1 r2mðnÞ;r �ðn
ðnÞ
1 � nðnÞ3 ÞrmðnÞ

þqðnÞd r3x2 ¼ 0

e
ðnÞ
33 r2uðnÞ;rr þ e

ðnÞ
31 þ e

ðnÞ
33

� �
ruðnÞ;r �2

ðnÞ
33 r2/ðnÞ;rr�2

ðnÞ
33 r/ðnÞ;r

�g
ðnÞ
33 r2uðnÞ;rr � g

ðnÞ
33 ruðnÞ;r þ cðnÞ1 r2#ðnÞ;r þ cðnÞ1 r#ðnÞ

þvðnÞ1 r2mðnÞ;r þvðnÞ1 rmðnÞ ¼ 0

d
ðnÞ
33 r2uðnÞ;rr þ d

ðnÞ
31 þ d

ðnÞ
33

� �
ruðnÞ;r �g

ðnÞ
33 r2/ðnÞ;rr � g

ðnÞ
33 r/ðnÞ;r

�lðnÞ33 r2uðnÞ;rr �lðnÞ33 ruðnÞ;r þ sðnÞ1 r2#ðnÞ;r þ sðnÞ1 r#ðnÞ

þ tðnÞ1 r2mðnÞ;r þ tðnÞ1 rmðnÞ ¼ 0 (8)

The equations above can be decoupled to obtain exact solutions
for a homogenous layer [5]. To simplify the term decoupling, we
introduce the following nondimensional parameters:

aðnÞ ¼ c
ðnÞ
11

c
ðnÞ
33

; dðnÞ ¼ c
ðnÞ
13

c
ðnÞ
33

; d�ðnÞ ¼ c
ðnÞ
12

c
ðnÞ
33

; bðnÞ ¼ e
ðnÞ
31

e
ðnÞ
33

�ðnÞ ¼ d
ðnÞ
31

d
ðnÞ
33

; cðnÞ ¼ 2
ðnÞ
33 c

ðnÞ
33

e
ðnÞ
33

� �2
; kðnÞ ¼ lðnÞ33 c

ðnÞ
33

d
ðnÞ
33

� �2

fðnÞ ¼ g
ðnÞ
33 c
ðnÞ
33

d
ðnÞ
33 e

ðnÞ
33

; gðnÞ ¼ bðnÞ3

bðnÞ1

; 1ðnÞ ¼ nðnÞ3

nðnÞ1

; XðnÞ ¼ cðnÞ1 c
ðnÞ
33

bðnÞ1 e
ðnÞ
33

YðnÞ ¼ sðnÞ1 c
ðnÞ
33

bðnÞ1 d
ðnÞ
33

; VðnÞ ¼ vðnÞ1 c
ðnÞ
33

nðnÞ1 e
ðnÞ
33

; WðnÞ ¼ tðnÞ1 c
ðnÞ
33

nðnÞ1 d
ðnÞ
33

(9)

and nondimensional multiphysics fields:

RðnÞrr ¼
rðnÞrr

c
ðnÞ
33

; RðnÞhh ¼
rðnÞhh

c
ðnÞ
33

; RðnÞzz ¼
rðnÞzz

c
ðnÞ
33

; D
ðnÞ
r1 ¼

D
ðnÞ
r

e
ðnÞ
33

B
ðnÞ
r1 ¼

B
ðnÞ
r

d
ðnÞ
33

HðnÞ ¼ bðnÞ1

c
ðnÞ
33

#ðnÞ; MðnÞ ¼ nðnÞ1

c
ðnÞ
33

mðnÞ

(10)

3.1.1 Hollow Cylinder. The solutions of Eq. (8) for a homoge-
nous hollow cylindrical layer are obtained through Eqs. (9) and
(10) in terms of nondimensional radial coordinate q ¼ r=a and

UðnÞ ¼ uðnÞ

a
; UðnÞ1 ¼

e
ðnÞ
33

ac
ðnÞ
33

/ðnÞ

WðnÞ1 ¼
d
ðnÞ
33

ac
ðnÞ
33

uðnÞ; XðnÞ ¼ qðnÞd x2a2

c
ðnÞ
33

(11)

Details of the procedure are given in Refs. [5] and [66]. The non-
dimensional solutions are obtained as follows:

UðnÞ ¼ AðnÞ

a
þ CðnÞ

a
qmðnÞ þ DðnÞ

a
q�mðnÞ þ K

ðnÞ
1

a
lnðqÞ þ K

ðnÞ
2

a

 !
q

þ K
ðnÞ
3

a
q3 Radial displacementð Þ (12a)

UðnÞ1 ¼
HðnÞ

a
þ GðnÞ

a
lnðqÞ þ CðnÞ

a
l
ðnÞ
1 qmðnÞ þ DðnÞ

a
l
ðnÞ
2 q�mðnÞ

þ ðlðnÞ3 lnðqÞ þ l
ðnÞ
4 Þ

q
a
þ K

ðnÞ
3 l
ðnÞ
5

a
q3 Electric potentialð Þ

(12b)

WðnÞ1 ¼
FðnÞ

a
þ EðnÞ

a
lnðqÞ þ CðnÞ

a
c
ðnÞ
1 qmðnÞ þ DðnÞ

a
c
ðnÞ
2 q�mðnÞ

þ ðcðnÞ3 lnðqÞ þ c
ðnÞ
4 Þ

q
a
þ K

ðnÞ
3 c

ðnÞ
5

a
q3 Magnetic potentialð Þ

(12c)

RðnÞrr ¼
q�1

a
ðdðnÞAðnÞ þ GðnÞ þ EðnÞÞ þ qmðnÞ�1

a
ðmðnÞð1þ l

ðnÞ
1 þ c

ðnÞ
1 Þ

þ dðnÞÞCðnÞ þ q�mðnÞ�1

a
ð�mðnÞð1þ l

ðnÞ
2 þ c

ðnÞ
2 Þ þ dðnÞÞDðnÞ

þ lnðqÞ
a
ðKðnÞ1 ð1þ dðnÞÞ þ l

ðnÞ
3 þ c

ðnÞ
3 � aðCðnÞ1 þ C

ðnÞ
3 3ÞÞ

þ 1

a
ðKðnÞ1 þ ð1þ dðnÞÞKðnÞ2 þ l

ðnÞ
3 þ l

ðnÞ
4 þ c

ðnÞ
3 þ c

ðnÞ
4

� aðCðnÞ2 þ C
ðnÞ
4 ÞÞ þ

q2

a
ð3ð1þ l

ðnÞ
5 þ c

ðnÞ
5 Þ þ dðnÞÞKðnÞ3

Radial stressð Þ (12d)

Table 1 Analogy between the hygrothermomagnetoelectro-
elastic coefficients for axisymmetric plane strain and plane
stress conditions

Plane strain Plane stress Plane strain Plane stress
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where A(n), C(n), D(n), E(n), F(n), G(n), and H(n) ðn ¼ 1; 2;…;NÞ are
MEE integration constants and C

ðnÞ
1 , C

ðnÞ
2 , C

ðnÞ
3 , and C

ðnÞ
4 are hygro-

thermal integration constants; the other parameters in Eq. (12) are
not given because of brevity. The other stress components, electric
displacement, and magnetic induction could be obtained by using
Eqs. (4) and (12). The hygrothermal integration constants are
achieved from the solution of hygrothermal differential equations
(7). For hollow cylindrical layers, radial temperature, and mois-
ture concentration distributions are found as

HðnÞ ¼ C
ðnÞ
1 lnðqÞ þ C

ðnÞ
2 Temperatureð Þ (13a)

MðnÞ ¼ C
ðnÞ
3 lnðqÞ þ C

ðnÞ
4 Moisture concentrationð Þ (13b)

All the aforementioned integration constants are obtained by
imposing proper boundary and interfacial conditions. In addition,
to determine the integration constants, Eqs. 12(a)–12(c) can be
substituted into the first equation of Eq. (8) [5]

aðnÞAðnÞ þ �ðnÞEðnÞ þ bðnÞGðnÞ ¼ 0 (14)

3.1.2 Solid Cylindrical Core. The multiphysics solutions of
Eq. (8) for a homogenous solid cylindrical core are similarly real-
ized in terms of nondimensional radial coordinate q ¼ r=b
(0 � q � 1) and

Uð1Þ ¼ uð1Þ

b
; Uð1Þ1 ¼

e
ð1Þ
33

bc
ð1Þ
33

/ð1Þ

Wð1Þ1 ¼
d
ð1Þ
33

bc
ð1Þ
33

uð1Þ; Xð1Þ ¼ qð1Þd x2b2

c
ð1Þ
33

(15)

It is worth noting that the first layer of the hollow or solid smart
multilayered cylindrical composite is made of a hollow or solid
cylindrical layer, respectively. Therefore, in this paper, the super-
script n¼ 1 specifies the solid layer of the cylinder. The nondi-
mensional solutions are written as [5]

Uð1Þ ¼ Dð1Þ

b
q�mð1Þ þ K

ð1Þ
2

b
qþ K

ð1Þ
3

b
q3 Radial displacementð Þ

(16a)

Uð1Þ1 ¼
Hð1Þ

b
þ Dð1Þ

b
l
ð1Þ
2 q�mð1Þ þ l

ð1Þ
4

b
q

þ K
ð1Þ
3 l
ð1Þ
5

b
q3 Electric potentialð Þ (16b)

Wð1Þ1 ¼
Fð1Þ

b
þ Dð1Þ

b
c
ð1Þ
2 q�mð1Þ þ c

ð1Þ
4

b
q

þ K
ð1Þ
3 c

ð1Þ
5

b
q3 Magnetic potentialð Þ (16c)

Rð1Þrr ¼
q�mð1Þ�1

b
ð�mð1Þð1þ l

ð1Þ
2 þ c

ð1Þ
2 Þ þ dð1ÞÞDð1Þ

þ 1

b
ðð1þ dð1ÞÞKð1Þ2 þ l

ð1Þ
4 þ c

ð1Þ
4 � bðCð1Þ2 þ C

ð1Þ
4 ÞÞ

þ q2

b
ð3ð1þ l

ð1Þ
5 þ c

ð1Þ
5 Þ þ dð1ÞÞKð1Þ3 Radial stressð Þ (16d)

in which D(1), F(1), and H(1) are MEE integration constants and
C
ð1Þ
2 and C

ð1Þ
4 are hygrothermal integration constants; the other

parameters in Eq. (16) are those obtained for the layer of a hollow
cylinder except for the following parameters:

C
ð1Þ
1 ¼ C

ð1Þ
3 ¼ 0; K

ð1Þ
1 ¼ 0;

K
ð1Þ
2 ¼

b
ð1Þ
1 C

ð1Þ
2 þ b

ð1Þ
3 C

ð1Þ
4

a
ð1Þ
2 þ a

ð1Þ
1

; c
ð1Þ
3 ¼ 0

c
ð1Þ
4 ¼

1

kð1Þcð1Þ � ðfð1ÞÞ2
ðKð1Þ2 ðcð1Þ � fð1ÞÞ þ K

ð1Þ
2 ð�ð1Þcð1Þ � bð1Þfð1ÞÞ

� bC
ð1Þ
2 ðXð1Þf

ð1Þ � Yð1Þcð1ÞÞ � bC
ð1Þ
4 ðVð1Þfð1Þ �Wð1Þcð1ÞÞÞ

l
ð1Þ
3 ¼ 0; l

ð1Þ
4 ¼

1

cð1Þ
ðKð1Þ2 ð1þ bð1ÞÞ � c

ð1Þ
4 fð1Þ þ bXð1ÞC

ð1Þ
2

þ bVð1ÞC
ð1Þ
4 Þ

(17)

From Eq. (17), we find out that the temperature and moisture con-
centration remain constant within the solid cylinder; the constant
values are the temperature and moisture concentration on the
outer surface of the solid cylinder.

3.2 Multilayered Cylinder. We consider a hollow multilay-
ered smart cylinder with inner radius a and outer radius b. To uti-
lize the closed-form solutions obtained above for each
homogenous cylindrical layer, the following new nondimensional
parameters are defined:

�rðnÞrr ¼
rðnÞrr

c
ð1Þ
33

¼ c
ðnÞ
33

c
ð1Þ
33

RðnÞrr ; �rðnÞhh ¼
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ð1Þ
33

RðnÞhh

�rðnÞzz ¼
rðnÞzz

c
ð1Þ
33

¼ c
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a
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e
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d
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d
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33

B
ðnÞ
r1 ; �#ðnÞ ¼ bð1Þ1

c
ð1Þ
33

#ðnÞ ¼ c
ðnÞ
33

c
ð1Þ
33

bð1Þ1

bðnÞ1

H

�mðnÞ ¼ nð1Þ1

c
ð1Þ
33

mðnÞ ¼ c
ðnÞ
33

c
ð1Þ
33

nð1Þ1

nðnÞ1

MðnÞ; XHTMEE ¼
qð1Þd x2a2

c
ð1Þ
33

(18)

Note that by substituting a with b in Eq. (18), the new nondimen-
sional parameters above could be used for a solid multilayered
smart cylinder.

Since imperfectly bonded interfaces could have major effects
on the reliability of designed composite structures, multiphysics
imperfections of bonded interfaces are also considered. The
imperfect interfaces investigated here are mechanically compliant
with hygrothermomagnetoelectrically weak conduction. For
highly conducting interfaces one can refer to Ref. [67]. The
imperfect multiphysics interfacial conditions can be simulated by
the generalized shear lag or spring layer model [68–70]. The fol-
lowing boundary and interfacial conditions are considered here
for a hollow multilayered cylinder:

�rð1Þrr ðq¼1Þ¼ �rrri

�rðjÞrr ðq¼qjÞ¼ �rðjþ1Þ
rr ðq¼qjÞ

vðjÞu �rðjÞrr ðq¼qjÞ¼ �Uðjþ1Þðq¼qjÞ� �UðjÞðq¼qjÞ�rðNÞrr ðq¼qNÞ

¼ �rrro ðvj
u�0Þ ðElasticÞ (19a)
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�/ð1Þðq¼1Þ¼ �/i

�DðjÞr ðq¼qjÞ¼ �Dðjþ1Þ
r ðq¼qjÞ

vðjÞ/ �DðjÞr ðq¼qjÞ¼ �/ðjþ1Þðq¼qjÞ� �/ðjÞðq¼qjÞ �/ðNÞðq¼qNÞ

¼ �/o ðv
j
/�0Þ ðElectricÞ (19b)

�uð1Þðq¼1Þ¼ �ui

�BðjÞr ðq¼qjÞ¼ �Bðjþ1Þ
r ðq¼qjÞ

vðjÞ/ �BðjÞr ðq¼qjÞ¼ �uðjþ1Þðq¼qjÞ� �uðjÞðq¼qjÞ�uðNÞðq¼qNÞ
¼ �uo ðvj

u�0Þ ðMagneticÞ (19c)

�#ð1Þðq¼1Þ¼ �#i

qðjÞr ðq¼qjÞ¼qðjþ1Þ
r ðq¼qjÞ

vðjÞh qðjÞr ðq¼qjÞ¼#ðjþ1Þðq¼qjÞ�#ðjÞðq¼qjÞ �#ðNÞðq¼qNÞ
¼ �#o ðvj

h�0Þ ðTemperatureÞ (19d)

�mð1Þðq¼1Þ¼ �mi

pðjÞr ðq¼qjÞ¼pðjþ1Þ
r ðq¼qjÞ

vðiÞm pðiÞr ðq¼qiÞ¼mðiþ1Þðq¼qiÞ�mðiÞðq¼qiÞ �mðNÞðq¼qNÞ
¼ �mo ðvj

m�0Þ ðj¼1;2;…;N�1Þ ðMoistureÞ (19e)

where the aspect ratio is qN ¼ b=a; vj
u, vj

/, vj
u, vj

h, and vj
m are,

respectively, nondimensional elastic, electric, magnetic, thermal,
and hygroscopic compliance constants of the imperfect interfaces.

The perfectly bonded interfaces are also represented by vj
u ¼ 0,

vj
/ ¼ 0, vj

u ¼ 0, vj
h ¼ 0, and vj

m ¼ 0. For the case of hollow multi-

layered cylinder rested on Winkler-type elastic foundation on
the inner or outer surfaces, the elastic boundary conditions (19a)

are modified, respectively, by �rð1Þrr ðq ¼ 1Þ ¼ KWi
�Uðq ¼ 1Þ or �rðNÞrr

ðq ¼ qNÞ ¼ �KWo
�Uðq ¼ qNÞ, in which KW ¼ kwa=c

ð1Þ
33 . Using

Eqs. (12), (14), (18), and (19) results in a linear algebraic equation
for integration constants

IMEE½ �7N�7N XMEEf g7N�1¼ JMEEf g7N�1 (20)

in which XMEEf g is a 7N � 1 vector of integration constants

fXMEEgT ¼ fAð1ÞCð1ÞDð1ÞEð1ÞFð1ÞGð1ÞHð1Þ… AðNÞCðNÞDðNÞEðNÞFðNÞ

GðNÞHðNÞg7N�1, IMEEf g is a 7N � 7N matrix and JMEEf g is a
7N � 1 vector whose components are not given because of brev-
ity. To solve the algebraic equation (20), the hygrothermal inte-
gration constants defined in Eq. (13) should be determined. The
integration constants for temperature distribution in a hollow mul-
tilayered cylinder are obtained by using Eqs. (13a), (18), and
(19d) and expressed by the algebraic equation

Ih½ �2N�2N Xhf g2N�1¼ Jhf g2N�1 (21)

Moreover, the integration constants for moisture concentration
distribution are found similarly by using Eqs. (13b), (18), and
(19e)

Im½ �2N�2N Xmf g2N�1¼ Jmf g2N�1 (22)

where Xhf gT¼
�

C
ð1Þ
1 C

ð1Þ
2 … C

ðNÞ
1 C

ðNÞ
2

�
and Xmf gT¼

�
C
ð1Þ
3

C
ð1Þ
4 … C

ðNÞ
3 C

ðNÞ
4 g are 2N � 1 vectors; Ihf g and Imf g are

2N � 2N matrices and Jhf g and Jmf g are 2N � 1 vectors whose
components are not given because of brevity. Solving algebraic
equations (21) and (22) provides the hygrothermal integration
constants required to determine the multiphysics integration con-
stants in Eq. (20).

A similar solution procedure is employed to analyze the multi-
physics responses of a solid multilayered cylinder with imper-
fectly bonded interfaces and outer radius RN ¼ b. Using the
modified nondimensional parameters of Eq. (18), by substituting a
with b, and employing the following boundary and interfacial con-
ditions, a closed-form solution is sought for the solid cylinder:

�rðjÞrr ðq¼qjÞ¼ �rðjþ1Þ
rr ðq¼qjÞ

vðjÞu �rðjÞrr ðq¼qjÞ¼ �Uðjþ1Þðq¼qjÞ� �UðjÞðq¼qjÞ
�rðNÞrr ðq¼1Þ¼ �rrro ðvj

u�0Þ ðElasticÞ (23a)

�DðjÞr ðq ¼ qjÞ ¼ �Dðjþ1Þ
r ðq ¼ qjÞ

vðjÞ/ �DðjÞr ðq ¼ qjÞ ¼ �/ðjþ1Þðq ¼ qjÞ � �/ðjÞðq ¼ qjÞ
�/ðNÞðq ¼ 1Þ ¼ �/o ðvj

u � 0Þ ðElectricÞ (23b)

�BðjÞr ðq ¼ qjÞ ¼ �Bðjþ1Þ
r ðq ¼ qjÞ

vðjÞ/ �BðjÞr ðq ¼ qjÞ ¼ �uðjþ1Þðq ¼ qjÞ � �uðjÞðq ¼ qjÞ
�uðNÞðq ¼ 1Þ ¼ �uo ðvj

u � 0Þ ðMagneticÞ (23c)

qðjÞr ðq ¼ qjÞ ¼ qðjþ1Þ
r ðq ¼ qjÞ

vðjÞh qðjÞr ðq ¼ qjÞ ¼ #ðjþ1Þðq ¼ qjÞ � #ðjÞðq ¼ qjÞ
�#ðNÞðq ¼ 1Þ ¼ �#o ðvj

h � 0Þ ðTemperatureÞ (23d)

pðjÞr ðq¼qjÞ¼pðjþ1Þ
r ðq¼qjÞ

vðiÞm pðiÞr ðq¼qiÞ¼mðiþ1Þðq¼qiÞ�mðiÞðq¼qiÞ
�mðNÞðq¼1Þ¼ �mo ðvj

m�0Þ ðj¼1;2;…;N�1Þ ðMoistureÞ (23e)

where q ¼ r=b. It is worth to note that similar to the hollow
cylinder, the elastic boundary condition on the outer surface of
the cylinder is modified for the solid multilayered cylinder rested

on Winkler-type elastic foundation by �rðNÞrr ðq ¼ 1Þ ¼ �KWo
�U

ðq ¼ 1Þ, in which KW ¼ kwb=c
ð1Þ
33 . The multiphysics solutions (12)

and (14) are employed for N-1 hollow cylindrical layers and mul-
tiphysics solutions (16) are utilized for the internal cylindrical
core. Using Eqs. (18) and (23) results in

IMEE½ �ð7ðN�1Þþ3Þ�ð7ðN�1Þþ3Þ XMEEf gð7ðN�1Þþ3Þ�1

¼ JMEEf gð7ðN�1Þþ3Þ�1 (24)

in which XMEEf g is a ð7ðN � 1Þ þ 3Þ � 1 vector of integration

constants XMEEf gT¼ Dð1Þ Fð1Þ Hð1Þ Að2Þ Cð2Þ Dð2Þ Eð2Þ Fð2Þ Gð2Þ
�

Hð2Þ ::: AðNÞ CðNÞ DðNÞ EðNÞ FðNÞ GðNÞ HðNÞg and IMEEf g is a
ð7ðN � 1Þ þ 3Þ � ð7ðN � 1Þ þ 3Þ matrix and JMEEf g is a
ð7ðN � 1Þ þ 3Þ � 1 vector. As mentioned earlier, the steady-state
temperature and moisture concentration throughout the solid mul-
tilayered cylinder are also the temperature and moisture concen-
tration on the outer surface of the solid cylinder.

3.3 Functionally Graded Cylinder. Used for the analysis of
FG cylinders, the solutions above enable removal of the stress discon-
tinuity across the interfaces of a multilayered cylinder, thereby allow-
ing a variation of material properties on the cylinder surfaces [71].

As described in Refs. [46,72] to simplify the mathematical
complexity of considering arbitrary profiles of material properties,
the FG cylinder could be modeled as a multilayered composite by
conveniently dividing it into a number of homogenous layers. To
replicate the smooth variation of material properties in an FGM,
the material properties of each layer are assumed to approximate
those of the FGM in that specific location. Increasing the number
of artificial homogenous layers reduces the level of approxima-
tion. In this paper, the material properties of FG cylinders are
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assumed to vary according to the following power-law models for
hollow and solid cylinders, respectively,

PðqÞ ¼ Pi þ ðPo � PiÞ
q� 1

qN � 1

� �nP

Hollow cylinder: q ¼ r

a

� �
(25a)

PðqÞ ¼ Pi þ ðPo � PiÞqnP Solid cylinder: q ¼ r

b

� �
(25b)

in which P is any property of the FG cylinder and subscripts “i”
and “o” denote the value of the property at the inner and outer
surfaces, respectively; nP also stands for the nonhomogeneity
index of the corresponding material property P. For a solid multi-
layered cylinder, P1 represents the material property on the axis.
Moreover, it is noteworthy to mention that the closed-form
expressions obtained in this paper for heterogeneous media are
exact solutions to the governing equations of their multiphysics
behavior. As such, they can be used in place of numerical finite
element software, such as ANSYS, ABAQUS, and COMSOL

Multiphysics.

4 Results

The results provided in this section for multilayered and FGM
cylinders are verified with those in literature [5,73] obtained for
homogenous composites. To this end, we consider the material
properties (Table 2) of adaptive wood (AW) constructed of
BaTiO3/CoFe2O4 as well as MEE constructed of BaTiO3/
CoFe2O4 with 20% of volume fraction Vf. The other material

properties are assumed to be: kTðN=sKÞ ¼ 0:383, kMðm2=sÞ
¼ 1731� 10�12, and qdðkg=m

3Þ ¼ 660:8. Without loss of
generality, we assume the multiphysics imperfection constants
for compliance do not change among interfaces; in addition,
radial heat and moisture fluxes are, respectively, represented

by the nondimensional terms: �q
ðnÞ
r ¼ ðabð1Þ1 =kTð1Þc

ð1Þ
33 Þq

ðnÞ
r and �p

ðnÞ
r

¼ ðafð1Þ1 =kMð1Þc
ð1Þ
33 Þp

ð1Þ
r .

4.1 Influence of Imperfect Multiphysics Interfaces. Figure 2
illustrates the influence of imperfectly bonded interfaces on the

structural responses of a hollow, multilayered, rotating, infinitely
long, hygrothermomagnetoelectroelastic (HTMEE) cylinder. The
cylinder is composed of three layers of adaptive wood (AW)
with the prescribed material properties. The absolute values of
nondimensional compliance constants for imperfect multiphysics
interfaces are also assumed: vu ¼ v/

�� �� ¼ vu

�� �� ¼ vhj j ¼ vmj j
¼ vHTMEE. As defined in Eq. (19), all the compliance constants are
nonpositive except the elastic compliance constant vu, which is
non-negative. The aspect ratio, inner radius, and nondimensional
angular velocity of the HTMEE cylinder are qN ¼ 4 (N¼ 3),
a¼ 1, and XHTMEE ¼ 1, respectively. The cylinder is subjected to
internal pressure and electromagnetic excitation on the inner
surface of the cylinder while the outer surface experiences the
temperature and moisture concentration rises. The following mul-
tiphysics boundary conditions are assumed for the analysis:

�rrrð1Þ ¼ �1; �/ð1Þ ¼ 1; �uð1Þ ¼ 1; �#ð1Þ ¼ 0; �mð1Þ ¼ 0

�rrr ¼ ðqNÞ ¼ 0; �/ðqNÞ ¼ 0; �uðqNÞ ¼ 0; �#ðqNÞ ¼ 5; �mðqNÞ ¼ 5

(26)

Conditions (26) could simulate the structural behavior of a pres-
sure vessel constructed of adaptive wood components working
at different environmental conditions of temperature and
moisture concentration and actuated with electromagnetic fields.
Figures 2(a) through 2(l) depict, respectively, the effect of imper-
fection compliance constant vHTMEE on the multiphysics
responses. For perfectly bonded interfaces, vHTMEE¼ 0, and the
numeric results reproduce those in Ref. [5] for a rotating homoge-
nous MEE cylinder under hygrothermal loading.

As expected from Eq. (19), Fig. 2 shows that the radial dis-
placement, electric potential, magnetic potential, temperature
change, and moisture concentration are discontinuous at the
interfaces. Due to the unconstraint interfacial conditions for hoop
and axial stresses, the discontinuity could also be observed in the
hoop and axial stress distributions. As seen in Fig. 2(a), a higher
vHTMEE leads to lower radial displacement on the inner surface
of the cylinder, and results in a larger radial displacement on the
outer surface. Likewise, Figs. 2(b) and 2(c) show that an increase
of vHTMEE enhance the electric potential and absolute value of
the radial electric displacement throughout the cylinder. Further-
more, a higher vHTMEE amplifies the maximum magnetic poten-
tial and reduces the radial magnetic induction within the cylinder
(Figs. 2(d) and 2(e)). Figure 2(f), on the other hand, shows a
decrease in the radial stresses throughout the cylinder by increas-
ing vHTMEE. The tensile hoop and axial stresses on the inner sur-
face and the compressive hoop and axial stresses on the outer
surface of the cylinder decrease with increasingly larger vHTMEE,
as illustrated in Figs. 2(g) and 2(h). The variation of hoop and
axial stresses should be accurately determined to prohibit the
potential fracture in piezoelectric and piezomagnetic components
[74]. It is noteworthy to remind that the steady-state temperature
and moisture concentration behave similarly due to the resem-
blance between the equations of Fourier heat conduction and
Fickian moisture diffusion. Accordingly, as depicted in Figs. 2(i)
through 2(l), the distribution of dimensionless temperature and
radial heat flux are those obtained for moisture concentration
change and radial moisture flux.

While Fig. 2 shows the multiphysics responses of a hollow
cylinder, Fig. 3 illustrates the effect of each physical loading
on the radial stress distribution of the composite cylinder. Based
on the coupled multiphysics analysis, each nondimensional
physical loading of mechanical rHTMEE, electric /HTMEE, mag-
netic WHTMEE, thermal HHTMEE, hygroscopic MHTMEE, and rotary
inertia XHTMEE is applied separately to the cylindrical structure
and the radial stress distribution is sought. As seen in Fig. 3,
under HTMEE loading the rotary inertia and hygrothermal load-
ing have more influence on the superimposed multiphysics
response.

Table 2 Material properties of adaptive wood (AW) and MEE
constructed of BaTiO3/CoFe2O4 [5,23,57]

Material property AW MEE Vf

	 

BaTiO3

¼ 0:2

c33 ðN=m2Þ 2.695� 1011 2.413� 1011

c11 ðN=m2Þ 2.86� 1011 2.540� 1011

c13 ðN=m2Þ 1.705� 1011 1.445� 1011

c12 ðN=m2Þ 1.73� 1011 1.445� 1011

e31 ðC=m2Þ �4.4 �1.212
e33 ðC=m2Þ 18.6 3.412
d31 ðN=AmÞ 580.3 4.172� 102

d33 ðN=AmÞ 699.7 5.162� 102

233 ðC2=Nm2Þ 9.3� 10�11 2.622� 10�9

g33 ðNs2=C2Þ 3.0� 10�12 2.162� 10�9

l33 ðNs2=C2Þ 1.57� 10�4 1.305� 10�4

b1 ðN=m2KÞ 6.105� 106 5.926� 106

b1 ðN=m2KÞ 6.295� 106 5.6� 106

n1 ðNm=kgÞ 1.6� 10�4 0
n3 ðNm=kgÞ 1.1� 10�4 0
c1 ðC=Km2Þ �13.0� 10�5 0
v1 ðCm=kgÞ 0 0
s1 ðN=AmKÞ 6.0� 10�3 0
t1 ðNm2=AkgÞ 0 0
kT ðN=sKÞ 0.383 1.2
kM ðm2=sÞ 1731� 10�12 1731� 10�12

qd ðkg=m3Þ 660.8 1204
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Figure 4 illustrates the multiphysics responses of an imperfectly
bonded, solid, two-layer, infinitely long, rotating, HTMEE cylin-
der in the absence of hygrothermal loading. The solid cylinder is
subjected to the following multiphysics excitation on its outer
surface:

�rrrð1Þ ¼ �1; �/ð1Þ ¼ 1; �uð1Þ ¼ 1; �#ð1Þ ¼ 0; �mð1Þ ¼ 0

(27)

The two-layer cylinder is constructed by bonding two AW layers.
The outer radius and nondimensional angular velocity are,

Fig. 2 Effect of imperfection compliance constants in a three-layer hollow cylinder
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respectively, assumed as b¼ 1 and XHTMEE¼ 1. Accordingly, the
multiphysics boundary condition (27) represents a rotary compos-
ite shaft actuated with electromagnetic fields and working in a
pressurized fluid with environmental temperature and moisture
concentration. The influence of nondimensional compliance con-
stants vHTMEE on the magnetoelectroelastic responses are depicted
in Figs. 4(a) through 4(d). For a perfectly bonded solid cylinder,
the multiphysics responses are aligned to those reported in Ref.
[73]. Since the solid multiphysics cylinder posses zero radial elec-
tric displacement and radial magnetic potential according to the
governing equation (5), the discontinuity is merely observed in
the radial displacement, hoop stress, and axial stress distributions.
As seen in Fig. 4(a), the absolute value of the radial displacement
on the outer surface of the cylinder enhances by increasing the
compliance constant. Furthermore, electric potential and magnetic
potential on the axis of the solid cylinder decrease by amplifying
the compliance constant, as seen in Figs. 4(b) and 4(c). The com-

pressive radial stress within the solid cylinder decreases by
increasing the compliance constant (Fig. 4(d)). It is worth men-
tioning that the value of radial displacement on the axis of the cyl-
inder is finite; yet as explained in [5], the stress components could
be singular on the axis depending on the material properties of
HTMEE cylinder.

4.2 Influence of Electromagnetic Actuation. Figure 5
shows the effect of smart composite layers, used as an actuator,
on the responses of a circular smart composite. For example, ei-
ther an inner or outer layer of the multilayered composite could be
actuated with an electromagnetic excitation applied on the inner
or outer surface of a circular disk, while the other surface could be
kept electromagnetically grounded. We consider an imperfectly
bonded, hollow, three-layer, rotating HTMEE thin circular disk
rested on Winkler-type elastic foundation on its inner surface with
nondimensional foundation stiffness KW¼ 1 subjected to different
electromagnetic excitations. The multilayered HTMEE cylinder is
assumed to be constructed of three homogenous AW layers. The
aspect ratio, inner radius, nondimensional angular velocity, nondi-
mensional imperfection compliance constant are, respectively,
assumed qN ¼ 4 (N¼ 3), a¼ 1, XHTMEE¼ 1, vHTMEE¼ 0.1. The
circular cylinder is subjected to pressure and temperature and
moisture concentration rise on its outer surface as follows:

�#ð1Þ ¼ 0; �mð1Þ ¼ 0

�rrrðqNÞ ¼ �1; �#ðqNÞ ¼ 1; �mðqNÞ ¼ 1 (28)

These boundary conditions correspond to a rotary hollow compos-
ite disk rested on a flexible foundation, working in a pressurized
hot fluid, and actuated with electromagnetic fields. The multilay-
ered HTMEE circular disk experiences different nondimensional

Fig. 2 (Continued)

Fig. 3 Effect of each physical loading on the radial stress
distribution
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electric potential /HTMEE and magnetic potential WHTMEE on its
inner and outer surfaces.

The influence of increasing the electromagnetic excitation of
actuator side on the structural responses of a three-layer smart cir-
cular disk is depicted in Fig. 5. The presence of an actuator on the
inner and outer surface of the circular disk has opposite effect on
the structural behavior of smart composite. It does not affect the
temperature and moisture concentration change distribution due to
the steady-state hygrothermomagnetoelectroelastic analysis. For
the case of an inner actuator, Figs. 5(a), 5(c), and 5(e) show that
greater electromagnetic excitations lead to lower radial displace-
ment on the inner surface, higher radial displacement on the outer
surface, and larger radial electric displacement and radial mag-
netic induction throughout the circular disk. Moreover, amplifying
the value of electromagnetic excitation of the inner actuator
reduces the radial stress throughout the circular disk, as illustrated
in Fig. 5(f). The insight on the antagonist effects of the inner and
outer actuation on the surface can be relevant to tailor the
response of a smart cylinder to meet prescribed multiphysics
requirements.

4.3 Influence of Heterogeneity. Figure 6 illustrates the influ-
ence of heterogeneity on the multiphysics responses of a perfectly
bonded, hollow, three-layer, infinitely long HTMEE cylinder
rested on Winkler-type elastic foundation on its outer surface. The
three-layer HTMEE cylinder is constructed of two MEE layers
with an embedded AW core (MEE/AW/MEE) and is subjected to
the following multiphysics boundary conditions on its surfaces:

�rrrð1Þ ¼ �1; �/ð1Þ ¼ 1; �uð1Þ ¼ 1; �#ð1Þ ¼ 1; �mð1Þ ¼ 1

�/ðqNÞ ¼ 0; �uðqNÞ ¼ 0; �#ðqNÞ ¼ 0; �mðqNÞ ¼ 0

(29)

The aspect ratio, inner radius, nondimensional angular velocity,
nondimensional imperfection compliance constant, and nondi-

mensional foundation stiffness are specified as qN ¼ 4 (N¼ 3),
a¼ 1, XHTMEE¼ 0, vHTMEE¼ 0, and KW¼ 1, respectively. The
boundary condition (29) might simulate a composite pipe carrying
a pressurized hot fluid located in soil and actuated by an electro-
magnetic field to control the structural responses. To investigate
the effect of AW core on the structural responses of an MEE/AW/
MEE multilayered cylinder, the behavior of the multilayered
cylinder with different nondimensional AW thickness tAW is com-
pared with the behavior of a homogenous cylinder constructed of
the MEE material.

Figure 6 shows that although multiphysics fields are continuous
throughout the perfectly bonded nonhomogeneous multilayer
composite, the hoop and axial stresses experience abrupt changes
across the interfaces due to the difference between the material
properties of the bonded layers. As shown in Fig. 6(a), increasing
the thickness of the middle AW layer enhances the absolute value
of the radial displacement on the inner surface of the cylinder.
The effect of tAW on the electric field is much more significant
than on the magnetic field, as depicted in Figs. 6(b) and 6(c). The
hoop stress also increases on the outer surface, as illustrated in
Fig. 5(f). The insight on the antagonist effects of the inner and
outer actuation on the surface can be relevant to tailor the
response of a smart cylinder to meet prescribed multiphysics
requirements. The greater tAW, the higher the compressive radial
stress throughout the cylinder, and the lower the compressive
hoop and axial stresses on the inner surface of the cylinder.
Changing the AW core thickness tAW also alters the thermal
responses of the structure but does not affect the hygroscopic field
(Table 2).

4.3 Influence of Nonhomogeneity Indices. As revealed in
Fig. 6, the presence of heterogeneity causes an abrupt change in
the hoop and axial stresses across the interfaces of multilayered
circular structures due to the different material properties of
bonded layers. This phenomenon might result in debonding and
crack initiation on the interfaces. As a result, FG smart structures

Fig. 4 Effect of imperfection compliance constants in a two-layer solid cylinder
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could be utilized to bypass the problem. Figure 7 presents the
structural responses of rotating hollow FG HTMEE cylinder and
thin circular disk rested on Winkler-type elastic foundation on its
inner surface. The FG circular components are composed of MEE
on the inner surfaces and AW on the outer surfaces and all mate-
rial properties vary by a power-law formulation as specified in
Eq. (25). To focus on the effect of nonhomogeneity indices on the
multiphysics response, all nonhomogeneity indices are assumed to
be equal np ¼ n. The aspect ratio, inner radius, nondimensional
angular velocity, and nondimensional foundation stiffness are
respectively qN ¼ 2, a¼ 1, XHTMEE¼ 1, and KW¼ 1. The multi-
physics boundary conditions are also specified as follows:

�/ð1Þ ¼ 0; �uð1Þ ¼ 0; �#ð1Þ ¼ 0; �mð1Þ ¼ 0

�rrrðqNÞ ¼ �1; �/ðqNÞ ¼ 1; �uðqNÞ ¼ 1; �#ðqNÞ ¼ 1; �mðqNÞ ¼ 1

(30)

It is worthwhile noting that the FG media have been artificially di-
vided to N¼ 500 layers to reproduce the FG profile. Moreover,
the FG media could represent rotary circular components rested
on a flexible foundation and subjected to a pressurized hot fluid,

in which the outer surfaces of the composite have been electro-
magnetically actuated in order to control the structural responses.

As shown in Figs. 7(a) through 7(f), the multiphysics responses
change continuously throughout the FG structure. The volume
fraction of AW in the FG media enhances, if the nonhomogeneity
indices increase, thereby leading to a decrease in the radial
displacement of the inner surface and an increase in the radial dis-
placement of the outer surface of FG circular thin disk, as shown
in Fig. 7(a). Furthermore for FG circular disk, the electromagnetic
field can also be tailored by varying the nonhomogeneity indices.
As seen in Fig. 7(b), a high nonhomogeneity index results in lower
electric potential. Also, magnetic potential does not reveal a
strong dependency on the nonhomogeneity indices, as depicted in
Fig. 7(c). Moreover, Fig. 7(d) shows that the tensile radial stress
decreases by amplifying the nonhomogeneity indices. Although
the aforementioned explanations relate to the multiphysics
responses of FG circular thin disks, a similar trend could also be
observed for FG hollow cylinders. As seen in Figs. 7(a), 7(b), and
7(d), radial displacement and radial stress for plane strain condi-
tion are higher than those for the plane stress condition; on the
other hand, the electric potential is greater for plane stress condi-
tion. Nevertheless, plane strain and plane stress conditions do not

Fig. 5 Effect of electromagnetic boundary condition in a three-layer hollow circular disk
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alter the uncoupled hygrothermal behavior. The temperature distribu-
tion changes by varying the nonhomogeneity indices; however, the
hygroscopic responses are independent of the nonhomogeneity indi-
ces because of the prescribed hygroscopic material properties for
MEE and AW (Figs. 7(e) and 7(f)). It should be mentioned that

although prescribed nonhomogeneity indices were assigned for all
material properties, the solution procedure developed in this paper
can also be utilized to further investigate the effects of each nonho-
mogeneity index on the structural response and eventually optimize
the response of an FG smart cylinder.

Fig. 6 Effect of thickness tAW of adaptive wood in a three-layer composite cylinder
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6 Conclusion

Closed-form solutions have been presented in this paper
for steady-state multiphysics responses of multilayered and FG
infinitely long cylinders and thin circular disks. Based on hygro-
thermomagnetoelectroelasticity theory, the effect of physical
interactions among moisture, temperature, magnetic, electric, and
elastic fields has been investigated on the structural behavior of
cylindrical hollow and solid smart composites. The coupled gov-
erning differential equations have been first decoupled and solved
in exact form for each multiphysics homogenous layer. Then
boundary and perfectly/imperfectly bonded interfacial conditions
have been imposed to solve the problem. The results allow inves-
tigation of the influence of bonding imperfections, heterogeneity
of bonded layers, and nonhomogeneity indices of FG media.

The solutions obtained in this paper might be used as benchmark
studies, including the verification of other analytic and numeric mul-
tiphysics problems. Moreover, the analysis could be used for fracture
analysis and optimum design of multilayered smart composites.
From this work we can draw the following points:

(1) Need to properly model the multiphysics imperfection. The
radial displacement, electric potential, magnetic potential,

temperature, and moisture concentration as well as hoop
and axial stresses have revealed discontinuity at the interfa-
ces of imperfectly bonded multilayered composite.

(2) Dependence of stress and electromagnetic field distribu-
tions on the imperfection compliance constants. The results
show that in hollow cylindrical structures higher values of
imperfection constants lead to lower radial electric dis-
placements and magnetic inductions.

(3) Zero radial electric displacement, magnetic induction, heat
flux, and moisture flux in solid smart cylinders. The discon-
tinuous distributions of multiphysics fields are observed
only in the radial displacement, as well as hoop and axial
stresses.

(4) Similar behavior of steady-state temperature and moisture
concentration due to the analogy of Fourier heat conduction
and Fickian moisture diffusion equations. We have shown
that, within hollow cylinders, an increase of the hygrother-
mal imperfection constant reduces the absolute value of
heat and moisture fluxes.

(5) Structural geometry and electromagnetic excitation of
actuators control the multiphysics response and inhibit fail-
ure initiation in smart laminates. For the case of actuator

Fig. 7 Effect of nonhomogeneity index of FG hollow cylinder and circular disk
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placed on the inner surface, higher values of electromag-
netic excitation lead to lower radial stresses throughout the
structure, as well as lower and higher hoop stresses on the
inner and outer surfaces of the smart cylinder, respectively.

(6) Smooth variation of multiphysics fields across the interfa-
ces of an FGM improves the structural behavior of smart
components. This insight suggests the potential to further
optimize each nonhomogeneity index of an FGM cylinder.
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