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Revision surgeries of total hip arthroplasty are often caused by a deficient structural
compatibility of the implant. Two main culprits, among others, are bone-implant interface
instability and bone resorption. To address these issues, in this paper we propose a novel
type of implant, which, in contrast to current hip replacement implants made of either a
fully solid or a foam material, consists of a lattice microstructure with nonhomogeneous
distribution of material properties. A methodology based on multiscale mechanics and
design optimization is introduced to synthesize a graded cellular implant that can mini-
mize concurrently bone resorption and implant interface failure. The procedure is
applied to the design of a 2D left implanted femur with optimized gradients of relative
density. To assess the manufacturability of the graded cellular microstructure, a proof-
of-concept is fabricated by using rapid prototyping. The results from the analysis are
used to compare the optimized cellular implant with a fully dense titanium implant and a
homogeneous foam implant with a relative density of 50%. The bone resorption and the
maximum value of interface stress of the cellular implant are found to be over 70% and
50% less than the titanium implant while being 53% and 65% less than the foam implant.
[DOI: 10.1115/1.4006115]
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1 Bone Replacement Implants

Current orthopedic prostheses are generally made of uniform
density, homogenous material, such as 316L stainless steel, cobalt
chromium alloys, titanium-based alloys and tantalum. Over the
last few decades, the design of orthopedic prostheses has been
improved to achieve long-term fixation and easy osseointegration.
Although technological advances have made current total hip
arthroplasty successful, over 13% of hip prostheses still require re-
vision surgeries as a result of bone resorption and aseptic loosen-
ing of the implant [1]. Revision surgery is a much more complex
procedure than the first total hip arthroplasty (THA) due to bone
degradation around the first implant. Bone degradation compro-
mises bone ability to adequately secure the new implant. Although
patient-related factors, such as sickle cell anemia [2], poor bone
quality [3], and high body mass index, may predispose the patient
to prosthetic failures, mechanical rather than medical factors are
major causes of implant failure [4]. Excluding biocompatibility
requirements, further three requirements can be identified as indi-
cators of implant success: (i) implant stability in the short and
long term, (ii) preservation of bone tissue around the implant
from resorption, and (iii) high wear and corrosion resistance of
the articulating surfaces.

The volumetric amount of wear particle and its clinical conse-
quences have been reduced considerably by the development of

extremely wear-resistant polymers [5,6] or the design of metal-
on-metal implants [7,8]. Yet, the reduction of bone-implant inter-
face instability and bone resorption in the long term still remains a
challenge.

Current orthopedic implants are generally stiffer than the bone
adjacent to the prosthesis. Due to its high stiffness, an implant pre-
vents the applied stress from being transferred to the adjacent
bone, thereby resulting in bone resorption around the implant.
This weakens the implant support, which leads to bone fracture
and implant loosening. Over the last three decades, alternative
implant designs have been proposed to reduce stress shielding and
minimize the associated clinical consequences [9]. Recent implant
designs have only been partially successful, as the solution of one
problem has given rise to another one. For example, to overcome
the mismatch between a stiff stem and the adjacent bone, compos-
ite and isoelastic hip stems were introduced [10,11]. The results of
these studies show an undesired increase of the shear stress
between the implant and the bone, an outcome that increases the
risk of interface motion [12,13]. These attempts help elucidate the
antagonist nature of stress shielding and bone-implant interface
stability.

In their seminal work, Kuiper and Huiskes identified the con-
flict existing between stress shielding and interface shear stress
[14,15] and attempted to find a trade-off design for a bi-dimen-
sional hip implant. They showed that one solution to this issue is
an implant whose material properties vary locally throughout the
structure. A non-homogeneous distribution of elastic properties
within the hip stem could contribute to minimizing the probability
of interface failure while concurrently limiting the amount of
bone loss. In their approach, however, the solution of the multiob-
jective problem was simplified, reformulated and solved as a sin-
gle objective optimization problem. As a result, the whole set of
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trade-off designs could not have been captured. Hedia et al.
[16,17] attempted to reconcile the conflicting nature of these
objective functions by proposing the use of three bioactive materi-
als: hydroxyapatite, Bioglass, and collagen, to design a graded
cementless hip stem. Although their implant design reduced bone
resorption and bone-implant interface stresses, the use of such
bioactive materials have limitations due to their brittleness and
insufficient strength when applied to load-bearing applications
[18–20]. In a more recent study, Fraldi et al. [21] applied a maxi-
mum stiffness topological optimization strategy to re-design a hip
prostheses with the goal of reducing stress shielding in the femur.
According to this method, elements with intermediate volume
fraction (between 0 and 1) are penalized to limit their presence in
the final solution. For regions with intermediate relative density,
certain microstructures should be proposed to match those materi-
als in terms of effective elastic properties. Laser micro-drilling is
suggested to create the required micro-porosity, an option that can
be used only on the implant surface, not throughout the implant.

Other advances in total hip replacement have used a micro-
structured material over a fully dense material. Hip implants with
porous tantalum have been proposed in knee and hip replacement
surgery [22]. Tantalum foam is an excellent material due to its
biocompatibility, high volumetric porosity, and modulus of elas-
ticity similar to that of bone. To create the tantalum foam, pure
tantalum is chemically deposited on a carbon skeleton. As a result,
the microstructure of a tantalum foam implant has an almost uni-
form and random distribution of pore shape and size [23] through-
out the implant. These material characteristics, however, have
been demonstrated to be incapable of solving the conflicting na-
ture of the physiological phenomena occurring in an implant
[14,15]. Indeed, whereas the reduced stiffness of the foam
decreases bone resorption, the uniform distribution of cells has the
undesired effect of increasing the interface stresses.

Recent advances in additive manufacturing, such as Electron-
Beam Melting (EBM), Selective Laser Melting (SLM), Stereoli-
thography Apparatus (SLA), and other rapid prototyping techni-
ques, offer the possibility of novel bone-replacement implants
with a controlled cellular microstructure [24–28]. As a result, cel-
lular components with tailored microstructures can be built with a
high level of quality, accuracy and reliability. Besides providing
an exceptional degree of control over the mechanical properties,
such manufacturing processes are capable of building graded cel-
lular structures. As demonstrated by the work of Kuiper and
Huiskes [14,15], this feature is an asset for bone-replacement
implants since the internal skeleton of the prosthesis can be
designed to ease osseointegration as well as to match the local me-
chanical properties of the femoral bone. By properly selecting to-
pology, size, and relative density of the unit cell of the implant, it
is thus possible to: (a) fabricate implants which can provide me-
chanical properties mimicking those of the host bone, (b) manu-
facture three-dimensional structures with an interconnected
porosity and pore sizes suitable to bone ingrowth and vasculariza-
tion, and (c) customize implants for each patient by using CT scan
data of the patient’s bone.

While the aforementioned research is promising for the support
of cellular microstructure based bone-replacement implants, the
literature is limited to the manufacturing aspects or the mechani-
cal testing of biomedical implants with periodic cellular micro-
structure [24–28]. No study has been found which deals with the
multiscale mechanics aspects of an implant with a functionally
graded cellular material as well as the multiobjective nature of the
features that their design requires.

This paper proposes a systematic methodology for the design of
bone-replacement implants with improved structural stability. For
total hip arthroplasty, we propose to design an implant with tai-
lored gradients of lattice material that can simultaneously mini-
mize bone resorption and bone-implant interface stress. The
procedure that hinges on multiscale mechanics theory and multi-
objective optimization is applied to the design of a bi-dimensional
femoral hip implant with optimal graded cellular microstructure.

Its biocompatibility performance is discussed with respect to that
of currently-used hip implants.

We note that in this work the terms “cellular,” “cell,” and “wall
cell,” refer exclusively to the artificial porous material of the
implant. These terms neither refer to body cells nor have a biolog-
ical or medical connotation.

2 Methodology

Kuiper and Huiskes [14,15] showed that the use of a graded
material in an orthopedic stem can lead to a reduction of both
stress shielding and bone-implant interface stress. To this end,
hierarchical computational procedures [29–32] can be imple-
mented to design an optimum material distribution within the
implant. These strategies might generally require a high computa-
tional cost besides yielding a microstructure which is difficult to
fabricate. In this work, we suggest to design gradients of material
properties through a tailored lattice microstructure, whose geo-
metrical parameters are optimized in each region of the implant to
achieve minimum bone loss and implant interface failure.

The mechanical properties of a cellular structure depend on the
relative density and the geometric parameters of the unit cell, as
described, for example, by the expression of the Young’s modulus
[33]:

E� ¼ CEs
q
qs

� �m

(1)

where E� is the effective Young’s modulus of the unit cell, q is
the density of the unit cell, and Es and qs are the Young’s modulus
and density of the constitutive material, respectively. In addition,
m has a value varying from 1 to 3, as determined by the mechani-
cal failure mode of the unit cell, and C is a geometric constant of
the unit cell. By changing the relative density of the lattice micro-
structure, it is thus possible to obtain desired values of mechanical
properties in any zone of the implant.

Figure 1 summarizes the procedure proposed here to design a cel-
lular implant with controlled gradients of mechanical properties.
The method integrates a multiscale mechanics approach to deal with
the scale-dependent material structure and a multiobjective optimi-
zation strategy to handle the conflicting nature of bone resorption
and implant interface failure. The main steps identified by the num-
bers reported in the flow chart of Fig. 1 are described here:

• (1-2) A finite element model of the bone is created by proc-
essing CT-scan data of a patient bone. The design domain of
the prosthesis is assumed to possess a 3D lattice microstruc-
ture, where the unit cell, i.e., the building block, can be of
any arbitrary topology (Fig. 1). The microscopic parameters
of the unit cell geometry and the macroscopic shape of the
implant are the design variables of the vector b. The unit cell
is assumed to be locally periodic, and its field quantities, such
as stress and strain, to vary smoothly through the implant.

• (3) The characteristic length of the unit cell in the cellular
implant is assumed to be much smaller than the characteristic
length of the macrodimensions of the implant. Hence, the
microstructure can be replaced with a homogeneous medium
whose equivalent mechanical properties, in particular the ho-
mogenized stiffness tensor of each unit cell, are calculated
through asymptotic homogenization theory [34–38].

• (4,5) The homogenized stiffness tensors are then used to con-
struct the stiffness matrix which will be the input to the Finite
Element (FE) solver. As a result, the average strains and
stresses throughout the bone and the structure of the prosthe-
sis are calculated.

• (6) To obtain the microscopic stress field for each unit cell
from the macroscopic strain, the stress recovery procedure
illustrated in Refs. [34,38–40] is used.

• (7) If the microscopic stress level is below a predefined
failure criterion, the macroscopic stresses and strains
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representing the mechanical behavior of the implant are used
to evaluate bone loss (mrðbÞ) and interface failure (FðbÞ). In
the formulation of the multiobjective optimization problem,
the constraints are set on the average porosity of the cellular
implant �/ðbÞ, the mean pore size �P, and the minimum thick-
ness of cell walls tmin. In particular, �/ðbÞ � 40% and
50 lm � �P � 800 lm are selected to ease bone ingrowth
[41,42]. The thickness of the cell walls is selected to be
greater than the minimum resolution tmin offered by a given
manufacturing process. For example, tmin is 100 lm and 70
lm, respectively, for SLM and SLA [27,43].

• (8-9) If the solutions of the optimization have not converged,
then the vector b of the design variables are updated to find
the set of non-dominated solutions of the Pareto front.

• (9) If the unit cell fails at the microscale level, the cell walls
will be iteratively increased to reduce the microscopic stresses.

As described above, multiscale mechanics and multiobjective opti-
mization are integrated aspects of the method proposed in this paper.
Their descriptions are separately detailed in the following subsections.

2.1 Multiscale Analysis and Design of a Cellular
Implant. The deformation and failure mechanisms of a structure
with heterogeneous material can occur at both the macroscopic
and microscopic scales. In a full scale simulation, the heterogene-
ities are explicitly modeled at the microscale to guarantee high ac-
curacy. The computational effort, however, can be very lengthy
and time-consuming. As an alternative, the microstructure can be
replaced by a homogeneous medium, and the mathematical theory of
homogenization can be used to characterize the mechanical behavior
of heterogeneous media [44]. As shown in Fig. 2, a body Xe with a
periodic microstructure subjected to the traction t at the traction
boundary Ct, a displacement d at the displacement boundary Cd, and
a body force f can be replaced by a homogenized body X with the
prescribed external and traction boundaries applied to Xe

, without ge-
ometrical details and voids of the local coordinate system.

The homogenized properties and strength of a cellular structure
can be obtained by performing either analytical or numerical or ex-
perimental approaches [33–39,45–53]. Extensive efforts have been
devoted to the derivation of the equivalent mechanical properties

Fig. 1 Flow chart illustrating the design of a graded cellular hip implant minimizing bone
resorption and implant interface failure

Fig. 2 Homogenization concept of a cellular structure

Journal of Biomechanical Engineering MARCH 2012, Vol. 134 / 031004-3

Downloaded 03 Apr 2012 to 132.216.88.112. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



by structural analysis [33,45–50]. In these studies, the effective
moduli and yield strength of a cellular material are generally mod-
eled by assuming that the cell walls flex like beams. Despite the
simplicity of this method in calculating the overall mechanical
properties, the results are reliable only if the relative density is
lower than 0.3 [47]. Furthermore, the actual stress distribution
within the unit cell walls cannot be captured. As an alternative
method, the asymptotic homogenization method is used in this
work to deal with the multiscale analysis of the cellular implant.
This technique is applied to calculate the homogeneous stiffness
matrix of the unit cell for different values of relative density as well
as to determine the microscopic stresses and strains [34,38,39]. The
asymptotic homogenization method has been widely used in topol-
ogy optimization [34,54–58] and hierarchical design of materials
and structures [29–32]. In this work, unlike hierarchical topology
optimization, a predefined unit cell topology with parametric geom-
etry is considered as the microstructure of the implant; then, the
optimization algorithm searches for the optimum unit cell geometry
of the lattice to minimize the antagonist objective functions under a
set of constraints. This procedure is similar to the one developed by
Bendsøe and Kikuchi [58] and is not limited to any cell topology;
we selected the hollow square cell as an example to demonstrate
the methodology. A brief explanation about the asymptotic homog-
enization technique and the main steps to calculate the effective
stiffness and microscopic stress and strain are provided below.

The approach assumes that each field quantity depends on two
different scales: one on the macroscopic level x, and the other on
the microscopic level, y¼ x/e, where e is a magnification factor
that enlarges the dimensions of a unit cell to make it comparable
with the dimensions of the material. The field quantities, such as
displacement, stress, and strain, are assumed to vary smoothly at
the macroscopic level, being periodic at the microscale [35–39].
The effective properties of the periodic material are determined
through the solution of local problems formulated on the represen-
tative volume element (RVE) of the material. As a result, the ho-
mogenized stiffness tensor (EH

ijkl) of a cellular material may be
defined as follow [39]:

EH
ijkl ¼

1

Yj j

ð
YC

EijpmMpmkldY (2)

where Yj j is the volume of the entire unit cell with void, Yc is the
solid part of the cell, Eijkl is the local elasticity tensor that depends
on the position within the representative volume element, i.e., Eijkl

is equal to the elasticity tensor of the material located in the cell
walls and it vanishes in the voids. Mijkl is the local structure ten-
sor, which relates the macroscopic strains (�e) to the local or micro-
structural strains (e) through the relation:

eij ¼ Mijkl�ekl (3a)

Mijkl ¼
1

2
ðdikdjl þ dildjkÞ � e�kl

ij (3b)

where dij is the Kronecker f, and e�kl
ij is the microstructural strain

corresponding to the component kl of the macroscopic strain ten-
sor (�ekl). e�kl

ij is the solution of the following equation:

ð
YC

Eijpme1
ijðvÞe�kl

pmðuÞdY ¼
ð

YC

Eijkle
1
ijðvÞ�ekldY (4)

where e1
ijðvÞ is the virtual strain. In general, �ekl can be an arbitrary

macroscopic strain tensor. Considering the assumption of small
deformation and linear material behavior, �ekl may be written as a
linear combination of unit strains. For a two-dimensional case, the
unit strains are defined as:

�e11 ¼ 1 0 0½ �T ; �e22 ¼ 0 1 0½ �T ; �e12 ¼ 0 0 1½ �T (5)

To calculate the effective mechanical properties of a cellular ma-
terial, the first task is to obtain the matrix Mijkl. After discretizing

the RVE domain, the unit strains are applied to each element of
the FE model. Periodicity of the strain field is ensured by impos-
ing periodic boundary conditions on the RVE edges. The direct
method [59] is selected here to derive periodic boundary condi-
tions. The microscopic strain field (e�kl

ij ) inside the RVE is
obtained by solving Eq. (4). The results are substituted into Eq.
(3b) to calculate the local structure tensor Mijkl for each element
of the RVE. Finally, the effective stiffness tensor EH

ijkl is obtained
by calculating Eq. (2). Once the local structure tensor, Mijkl, is
obtained, the microscopic strains and stresses corresponding to
the macroscopic strain can be obtained via Eq. (3a) and the consti-
tutive equation of the cell wall material.

The steps described above are used to compute the homoge-
nized stiffness tensor for each unit cell of the cellular hip implant
(Fig. 1). These tensors are used to construct the global stiffness
matrix for the FE solver to obtain macroscopic stress and strain
distribution within bone and implant. The values are then post-
processed to evaluate the objective functions of the multiobjective
optimization problem, whose formulation is described in the fol-
lowing section.

2.2 Formulation of the Multiobjective Optimization
Problem. For the design of an optimum implant, we impose the
simultaneous minimization of the amount of bone loss around the
prosthesis, and the probability of mechanical failure at the bone-
implant interface. As illustrated in Fig. 1, the multiobjective opti-
mization problem can be formulated as:

Minimize :
mrðbÞ
FðbÞ

�
bone loss

interface failure

Subject to

�/ðbÞ � 40%
50lm � �P � 800lm

t � tmin

average porosity

meanpore size

cell wall thickness

(6)

The amount of bone loss around the stem is determined by assess-
ing the amount of bone that is underloaded. Bone can be consid-
ered locally underloaded when its local strain energy (Ui) per unit

of bone mass (q), averaged over n loading cases (S ¼ 1
n

Pn
i¼1

Ui

q ),

is beneath the local reference value Sref , which is the value of S
when no prosthesis is present. However, it has been observed that
not all the underloading leads to resorption; rather a certain frac-
tion of underloading (the threshold level or dead zone s) is toler-
ated. In fact, bone resorption starts when the local value of S is
beneath the value of ð1� sÞSref [14,60]. Using this definition, the
resorbed bone mass fraction mr can be obtained from:

mrðbÞ ¼
1

M

ð
V

gðSðbÞÞqdV (7)

where M and V are the original bone mass and volume respec-
tively, and gðSðbÞÞ is a resorptive function equal to unity if the
local value of S is beneath the local value of ð1� sÞSref and equal
to 0 if ð1� sÞSref < S. In this study, the value of the dead zone s
is assumed to be 0.5 [14].

The other objective is to minimize the probability of local inter-
face failure, which is expressed by the following functional of the
interface stress distribution:

FðbÞ ¼ 1

n

Xn

i¼1

ð
P

f ðrb
i ÞdP (8)

where FðbÞ is the global interface function index, rb
i is the inter-

face stress at the loading case i, depending on the design variable
b, P is the interface area, and f ðrb

i Þ is the local interface stress
function, which is defined based on the multi-axial Hoffman fail-
ure criterion [61]. This function is used to determine where local
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debonding might occur along the bone-implant interface [14,62].
The probability of local interface failure f ðrÞ is given by:

f ðrÞ ¼ 1

StSc
r2

n þ
1

St
� 1

Sc

� �
rn þ

1

S2
s

s2 (9)

where St and Sc are the uniaxial tensile and compressive strengths,
respectively, Ss is the shear strength, and rn and s are normal and
shear stresses at the bone-implant interface, respectively. For
f ðrÞ � 1, a high probability of failure is expected, whereas for
f ðrÞ � 1 the risk of interface failure is low. Tensile, compression,
and shear strengths of bone can be expressed as a function of bone
density, following the power law relations obtained by Pal et al.
[62]

St ¼ 14:5q1:71; Sc ¼ 32:4q1:85; Ss ¼ 21:6q1:65 (10)

The distribution of bone density can be obtained through a CT-
scan data of bone and then used in Eq. (10) to find the effective
mechanical properties of the bone, from which the local interface
failure can be determined via Eq. (9). Finally, the interface failure
index, FðbÞ, is evaluated by means of Eq. (8). It should be noted
that FðbÞ serves as a qualitative indicator only; lower values of
FðbÞ indicate reduced probability of local interface failure in the
implant.

The expressions of bone resorption after implantation, and me-
chanical failure of bone-implant interface described in this section

are used in the finite element analysis to evaluate the objective
functions to be optimized. The following sections shows the appli-
cation of the method for the design of a two dimensional cellular
implant.

3 Application of the Methodology to design a 2D

Femoral Implant with a Graded Cellular Material

3.1 FEM model of the Femur at the Macroscale. The left
hand side of Fig. 3 shows the geometry of the left femur consid-
ered in this work along with the appropriate loads and boundary
conditions. These data have been obtained from the work of
Kuiper and Huiskes [14]. The 3D geometry of the femur is simpli-
fied into a 2D model where the thickness of the stem and bone
varies such that the second moment of area about the out-of-plane
axis does not differ in both models [16]. Furthermore, in this pa-
per, the implant material is designed to be an open cell lattice to
ease bone in growth in the implanted stem and obtain a full bond.
Although bone ingrowth does not exist in a postoperative situa-
tion, it can appear later if local mechanical stability is guaranteed.
The minimization of interface stress reduces the possibility of
occurrence of interface micromotion and instability [4]. There-
fore, to decrease the computational cost required by a stability
analysis based on a nonlinear frictional contact model, the pros-
thesis and the surrounding bone are assumed fully bonded.

The load case represents daily static loading during the stance
phase of walking [63]. The distal end of the femur is fixed to
avoid rigid body motion. For the material properties of the model,
we consider 20 GPa as the Young’s modulus of the cortical bone
and 1.5 GPa for the proximal bone. The Poisson’s ratio is set to be
0.3 [14].

3.2 FEM model of the Cellular Implant at the
Microscale. The right hand side of Fig. 3 illustrates the model of
a cementless prosthesis implanted into the human femur. The grid
depicts the domain of the implant to be designed with a lattice ma-
terial of graded properties. Figure 4 shows the unit cell geometry
used for the tessellation of the whole implant. The gradients of
material properties are governed by the lattice relative density,
which is a variable controlled by the cell size and wall thickness
of the hollow square. In future work, the performance of alterna-
tive cell topologies suitable for bone tissue scaffolding will be
investigated, as well as combinations of dissimilar unit cells in the
tessellation [64].

For the material property of the implant, we consider Ti6Al4V
[24], which is a biocompatible material commonly used in EBM.
Its mechanical properties are the following: 900 MPa for the yield
strength of the solid material, 120 GPa for Young’s modulus, and
0.3 for Poisson’s ratio.

3.3 Design of the Graded Cellular Material of the
Implant. The procedure introduced in this paper for the design of
a graded cellular implant requires both multiscale analysis and
multiobjective optimization, as described in Secs. 2.1 and 2.2 and
shown in Fig. 1. The variables of the lattice model are the relative
densities attributed to 130 sampling points, 26 rows along the

Fig. 3 2D Finite element models of the femur (left) and the
prosthesis implanted into the femur (right)

Fig. 4 2D hollow square unit cell for given values of relative density
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prosthetic length and 5 columns along the radial direction, as
shown in the right side of Fig. 3. The number of sampling points
has been chosen to be 130 to limit the computational time required
for the analysis and optimization, while providing a reasonable re-
solution for the relative density distribution. For a more refined den-
sity distribution, the number of sample points can be increased.
Their values have been constrained in the range 0:1 � q � 1 [47]
to prevent elastic buckling from occurring in the unit cell prior to
yielding. The values of the relative density between the sampling
points are obtained through linear interpolation. Although not con-
sidered in the current research, the shape of the implant could be
included in the vector b as a design variable (Fig. 1).

To calculate the stress and strain regime of the implant, the
steps explained in Sec. 2.1 are followed. Initial values of relative
density are assigned to each element of the FE model, created in
ANSYS (Canonsburg, Pennsylvania, U.S.A). The stiffness matrix
of each element is calculated through a computational code,
2DHOMOG, developed in-house, which obtains the homogenized
stiffness matrix of the square unit cell as a function of relative
density. Figure 5 shows the results which are first obtained at dis-
crete points of relative density. To obtain the continuous functions
for the properties, we calculate through the least squares method
the expressions (Table 1) for two ranges of relative density, i.e.,
q < 0:3 and q > 0:3. These functions enable to assign the values
of the stiffness for a given relative density to each of the sample
points modeled in the FE solver. We note that the expressions of
Young’s moduli and Poisson’s ratios in the x1 and x2 directions do
not change since the cell thickness is uniform.

Once the stress and strain regimes of the cellular material have
been calculated, the non-dominated sorting genetic (NSGA-II)

algorithm [65] is employed to solve the multiobjective optimiza-
tion problem, described in Sec. 2.2. The strain energy within the
bone and the stress distribution at the bone-implant interface is
then calculated and used in Eqs. (7) and (8) to evaluate the objec-
tive functions. The initial population is then sorted based on the
nondomination front criterion. A population of solutions, called
parents, are selected from the current population, based on their
rank and crowding distance. Then, genetic operators are applied
to the population of parents to create a population of off-springs.
Finally, the next population is produced by taking the best solu-
tions from the combined population of parents and off-springs.
The optimization continues until the user-defined number of func-
tion evaluations reaches 25,000 [65]. The computational cost
required to run the optimization process in a single 2.4 GHz Intel
processor with 4 GB RAM was about 300,000 CPU s, about three
and a halfdays. We plan to use parallel computing with a PC clus-
ter in future work; this will considerably reduce the computational
time, since each function evaluation can be performed
independently.

For each point in the objective function space, the stress recov-
ery procedure is applied to verify whether the stresses are admissi-
ble. To apply this procedure, the average macroscopic strain
inside each unit cell is found. The position of each unit cell within
the implant is obtained after imposing a proper cell tessellation,
which in this work has been set to be uniform. The size of the unit
cell is selected as small as possible to capture the relative distribu-
tion contour with higher resolution. For a relative density of 0.1,
the square cell sizes for the cell wall thickness of either 70 or 100
lm have been selected, respectively, to be 1.36 and 1.8 mm. Once
the position of the unit cells has been obtained, 3	 3 Gauss points
are assigned to each cell. The values of relative density and mac-
roscopic strain at these points are obtained from the relative den-
sity distribution and macroscopic strain field. For Gauss points
located outside the implant border, the values are linearly extrapo-
lated from those located at the neighboring points inside the
implant domain. Using a Gaussian quadrature integration [66], the
average relative density and macroscopic strain of each cell are
calculated. The local stress distribution and the yield safety factor
of each cell are obtained through the von Mises stress criterion.
The procedure is applied to all unit cells of the selected optimal
design located on the Pareto frontier and the minimum local safety
factor of a cell is specified as design safety factor.

4 Results and Discussion

The advantage of multiobjective optimization with a posteriori
articulation of preference is that a set of optimum solutions are
available without requiring the designer to choose in advance any
weighting factors to the objective functions. Once the whole set of
Pareto solutions has been determined, the designer has the free-
dom to select the desired solution based on the importance of
bone mass preservation relative to the amount of interface stress.
Figure 6 shows all the optimum solutions, i.e., the relative density
distribution, for a hip stem implant with graded cellular material.
The x axis represents the amount of bone resorption for the
implanted hip; on the y axis is the interface failure index. Among
the optimal solutions, we examine three representative relative
density distributions: the extreme points, A and C, of the Pareto
frontier, for which one objective function has importance factor 0
and the other 100%, and a solution B characterized by a 50%
weight factor. For each solution, Fig. 6 gives the following per-
formance metrics: bone resorption (mr), interface failure index
(FðbÞ), maximum interface failure (f ðrÞmax), average porosity of
each stem ( �/), and design safety factor (SF) after implementing
the stress recovery procedure. The maximum interface failure
f ðrÞmax is included since FðbÞ, which quantifies only the overall
effect of the implant stiffness on the interface stresses, is not suffi-
cient to provide information on the probability of failure.

As seen from the performance metrics in Fig. 6, the porosity of
solutions A, B, and C, is greater than 40%, which is satisfactory

Fig. 5 Effective Young’s modulus of 2D square lattice versus
relative density. Solution points obtained through homogeniza-
tion theory are fitted with the least squares method.

Table 1 Effective Mechanical Properties of the Square Unit
Cell as a Function of Relative Density

q < 0:3 0:3 < q < 1

E1

Es
¼ E2

Es
0:58ðqÞ1:046

1:27ðqÞ2 � 0:52ðqÞ þ 0:23

G

Es
0:093ðqÞ3:07

1:26ðqÞ3 � 1:33ðqÞ2 þ 0:51ðqÞ � 0:065

�21

�s
¼ �12

�s
0:7ðqÞ1:05

0:68ðqÞ2 þ 0:28ðqÞ þ 0:06
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for bone ingrowth [41]. By comparing implants C and A, we
observe that a raise of the implant porosity from point C to A
results in an implant stiffness decrease, which, on one hand, low-
ers bone loss and, on the other hand, enhances the risk of interface
failure. When solution B is compared to C, a reduction of 8% of
bone resorption is noted with a slight increase of the peak value of
the interface failure. On the other hand, by contrasting solution B
to A, we note a significant increase (60%) of the peak value of
interface failure, which is below the Hoffman failure strength, and
a minor reduction (2%) of the amount of bone resorption. The
main benefit of solution A is the maximum porosity of the micro-
structure that can promote bone ingrowth. Solution B, on the other
hand, might be the preferred solution with respect to low bone
resorption and interface failure. These observations emerge only
by inspection of the objective functions selected in this work; we
remark here that other parameters should be taken into account
for the selection of the best implant. These include patient’s bone

characteristics, the range of activity, age, and desired level of
bone mass preservation after implantation.

For prescribed geometric loading and constraint conditions, we
now compare the metrics of resorbed bone mass (mr) and distribu-
tion of interface stress (f ðrbÞ) of the optimal solution B with those
of (i) a currently-used fully dense titanium stem and (ii) a cellular
implant with a uniformly distributed relative density of 50%. Fig-
ures 7 and 8 illustrate the results of the comparison.

For the solid titanium stem, the amount of bone resorption cal-
culated through Eq. (7) is 67%, and the interface failure index
FðbÞ obtained from Eq. (8) is 1.33. Using the distribution of f ðrÞ
generated around the titanium stem (Fig. 8(a)), we observe that
the maximum value of interface failure (0.51) occurs at the distal
end of the implant. As expected, this implant is much stiffer than
the surrounding bone, thereby resulting in a higher amount of
bone resorption. For the numerical validation, the interface shear
stress of the titanium implant at the proximal region is also

Fig. 6 Trade-off distributions of relative density for the optimized cellular implant

Fig. 7 Distribution of bone resorption around (a) fully dense titanium implant, (b) cellular
implant with uniform relative density of 50%, (c) graded cellular implant (solution B in Fig. 6)
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compared with the one obtained by Kowalczyk for a 3D model
[4]. The mean and the maximum values of interface shear stress
for the 3D titanium implant in the work by Kowalczyk [4] are
0.57 and 2.8 MPa, respectively. These values are respectively
0.31 and 2.15 MPa for the titanium implant in this paper. The con-
tribution to the higher level of shear stress in the 3D model of
Kowalczyk is the distribution of shear force on a smaller area. In
Kowalczyk’s study [4], the implant and bone are bonded only at
the proximal region, while in our work the whole bone-implant
interface is bonded, which results in a decrease of the mean and
the maximum values of interface shear stress.

The cellular implant with uniform relative density of 50% is
approximately three times more flexible than the titanium stem.
This implant can qualitatively simulate the behavior of an implant
made out of tantalum foam. For this stem, the amount of bone
resorption and the interface failure index are about 34% and 2.87,
respectively, and the interface failure is maximum (0.71) at the
edge of proximal region. Compared to the solid titanium implant,
the amount of bone resorption decreases by 50%, whereas the
maximum interface failure increases about 40%. This shows that a
decrease of the implant stiffness with uniform porosity distribu-
tion aiming at reducing bone resorption has the undesirable effect
of increasing the risk of interface failure at the proximal region.
This outcome confirms the findings of the previous work by
Kuiper and Huiskes [14].

Figure 7(c) and 8(c) show the results for the graded cellular
implant B. Its bone resorption and interface failure index are 16%
and 1.15, respectively. The peak value of the local interface fail-
ure is 0.25. Compared to the titanium stem, both the amount of
bone resorption and the peak of interface failure decrease of 76%
and 50%, respectively. With respect to the uniformly-distributed
cellular implant, the decrease of bone resorption and interface fail-
ure peak is of 53% and 65%, respectively. A graded cellular
implant with optimized relative density distribution is thus capa-
ble of reducing concurrently both the conflicting objective func-
tions. In particular, bone resorption reduces as a result of the
cellular material which makes the implant more compliant; the
interface stress, on the other hand, is minimized by the optimized
gradients of cellular material.

A proof-of-concept implant was built to verify the manufactur-
ability of the optimum grade lattice material. Figure 9 shows the
polypropylene prototype of solution B, which was manufactured
with a 3D printer Objet Connex500 [67]. A uniform tessellation
and a square unit cell of 1.8 mm size were assumed to draw the
model. The cell geometry was calculated from the average rela-
tive density obtained from the method described in this paper. An
STL file of the graded cellular implant, solution B, was finally
used for rapid prototyping.

The limitations of the method proposed in this paper are here
discussed. First, the method tackles the design of an implant stati-
cally loaded in the stance phase of walking. Further research is
required to extend it to variable loading and fatigue life design.

Second, the accuracy of the asymptotic homogenization needs
to be investigated at the vicinity of the implant borders. Although
macroscopic mean stress fields on the boundaries are satisfied in
the global solutions [40,68], microscopic stresses do not satisfy
the Y-periodicity assumption. These boundary effects, however,
may be captured by applying a boundary layer corrector [68,69], a
spatially decaying stress localization function [70], or an adaptive
multiscale methodology [71]. To investigate the accuracy of these
techniques, it is required to construct a detailed finite element
model and compare the actual stress/strain distribution inside the
cell walls with the microscopic stresses/strains estimated from the
homogenization method. This task will be performed in future.

Third, to extend the proposed procedure to three dimensions, a
3D cell topology with high porosity, interconnected pore struc-
ture, large surface area with suitable textures, and good

Fig. 8 Distribution of local interface failure f ðrÞ around (a) fully dense titanium implant,
(b) cellular implant with uniform relative density of 50%, (c) graded cellular implant (solu-
tion B in Fig. 6)

Fig. 9 Polypropylene proof-of-concept of the optimal graded
cellular implant (solution B)
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mechanical properties should be selected [72,73]. The asymptotic
homogenization will be applied to characterize tissue scaffolding
cell topologies for a wide range of relative density. Their effective
moduli, yield and ultimate surfaces for multiaxial loading condi-
tions will be obtained to create a standard library from which to
select suitable cell geometries for a 3D cellular implant design.

Fourth, bone has been here considered as consisting of a cancel-
lous and a cortical part with isotropic mechanical properties. Fur-
ther study is necessary to improve the constitutive material model
of bone and to consider bone as a graded cellular material.

Finally in the optimization procedure, a simple formulation has
been used to quantitatively measure both bone resorption and
implant stability. In a future study, detailed simulations of implant
stability [74–77] and bone remodeling process [60,77–80] can be
performed to assess both the short and long term performance of
the implant.

5 Concluding Remarks

This work has presented a methodology integrating multiscale
analysis and design optimization to design a novel hip implant
made of graded cellular material. The method can contribute to
the development of a new generation of orthopedic implants with
a graded cellular microstructure that will reduce the clinical con-
sequences of current implants.

In the first part of the paper, the homogenization method has
been reviewed and then used to capture the mechanics of the
implant at the micro and macro scale. In the second part, multiob-
jective optimization has been applied to find optimum gradients of
material distribution that minimize concurrently bone resorption
and bone-implant interface stresses. The results have shown that
the optimized cellular implant exhibits a reduction of 76% of
bone resorption and 50% of interface stress, with respect to a fully
dense titanium implant.
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